Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling

A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2017-11, Vol.10 (21), p.4198-4206
Hauptverfasser: Kim, Byoungsu, Takechi, Kensuke, Ma, Sichao, Verma, Sumit, Fu, Shiqi, Desai, Amit, Pawate, Ashtamurthy S., Mizuno, Fuminori, Kenis, Paul J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4206
container_issue 21
container_start_page 4198
container_title ChemSusChem
container_volume 10
creator Kim, Byoungsu
Takechi, Kensuke
Ma, Sichao
Verma, Sumit
Fu, Shiqi
Desai, Amit
Pawate, Ashtamurthy S.
Mizuno, Fuminori
Kenis, Paul J. A.
description A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.
doi_str_mv 10.1002/cssc.201701255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1942700672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961765120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EorxWRmSJhSXlOomdeCxReUjlIQESW-QmDnVJ4hI7KjD1JyDxD_tLcCkUiYXJlv3do3vOQWifQJcA-MeZMVnXBxIB8SldQ1skZqFHWfiwvroHpIO2jRkDMOCMbaKOH_OQQARb6OlK1_PZe--5lbo1-KZRlWhe8UDNZx891eDTUk_xibBWuldR5_h6YlWl3oRVusa6wMoanAg70rnEdtTo9nGE-y8T6YRkbb9GLt1fqerHXbRRiNLIve9zB92f9u-Sc29wfXaR9AZe5paiXhwQCJgzRMM4lxxin8a8KEAMgcVhRHnM-JANqcgCDiQsOA0dlZMAikIEVAQ76GipO2m082VsWimTybIU9cJkSnjoRy6MyHfo4R90rNumdts5ipGIUeKDo7pLKmu0MY0s0skyp5RAuqghXdSQrmpwAwffsu2wkvkK_8ndAXwJTFUpX_-RS5Pb2-RX_BPylpSe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961765120</pqid></control><display><type>article</type><title>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Byoungsu ; Takechi, Kensuke ; Ma, Sichao ; Verma, Sumit ; Fu, Shiqi ; Desai, Amit ; Pawate, Ashtamurthy S. ; Mizuno, Fuminori ; Kenis, Paul J. A.</creator><creatorcontrib>Kim, Byoungsu ; Takechi, Kensuke ; Ma, Sichao ; Verma, Sumit ; Fu, Shiqi ; Desai, Amit ; Pawate, Ashtamurthy S. ; Mizuno, Fuminori ; Kenis, Paul J. A.</creatorcontrib><description>A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201701255</identifier><identifier>PMID: 28941070</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Air flow ; batteries ; Cathodes ; Computation ; Computer programs ; Current density ; Diffusion layers ; Discharge ; electrodes ; Electrolytes ; Gaseous diffusion ; Hot pressing ; Ionic liquids ; lithium ; Metal air batteries ; modeling ; Optimization ; Porosity ; Rechargeable batteries</subject><ispartof>ChemSusChem, 2017-11, Vol.10 (21), p.4198-4206</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</citedby><cites>FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</cites><orcidid>0000-0001-7348-0381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201701255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201701255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28941070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Byoungsu</creatorcontrib><creatorcontrib>Takechi, Kensuke</creatorcontrib><creatorcontrib>Ma, Sichao</creatorcontrib><creatorcontrib>Verma, Sumit</creatorcontrib><creatorcontrib>Fu, Shiqi</creatorcontrib><creatorcontrib>Desai, Amit</creatorcontrib><creatorcontrib>Pawate, Ashtamurthy S.</creatorcontrib><creatorcontrib>Mizuno, Fuminori</creatorcontrib><creatorcontrib>Kenis, Paul J. A.</creatorcontrib><title>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.</description><subject>Air flow</subject><subject>batteries</subject><subject>Cathodes</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Current density</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>electrodes</subject><subject>Electrolytes</subject><subject>Gaseous diffusion</subject><subject>Hot pressing</subject><subject>Ionic liquids</subject><subject>lithium</subject><subject>Metal air batteries</subject><subject>modeling</subject><subject>Optimization</subject><subject>Porosity</subject><subject>Rechargeable batteries</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EorxWRmSJhSXlOomdeCxReUjlIQESW-QmDnVJ4hI7KjD1JyDxD_tLcCkUiYXJlv3do3vOQWifQJcA-MeZMVnXBxIB8SldQ1skZqFHWfiwvroHpIO2jRkDMOCMbaKOH_OQQARb6OlK1_PZe--5lbo1-KZRlWhe8UDNZx891eDTUk_xibBWuldR5_h6YlWl3oRVusa6wMoanAg70rnEdtTo9nGE-y8T6YRkbb9GLt1fqerHXbRRiNLIve9zB92f9u-Sc29wfXaR9AZe5paiXhwQCJgzRMM4lxxin8a8KEAMgcVhRHnM-JANqcgCDiQsOA0dlZMAikIEVAQ76GipO2m082VsWimTybIU9cJkSnjoRy6MyHfo4R90rNumdts5ipGIUeKDo7pLKmu0MY0s0skyp5RAuqghXdSQrmpwAwffsu2wkvkK_8ndAXwJTFUpX_-RS5Pb2-RX_BPylpSe</recordid><startdate>20171109</startdate><enddate>20171109</enddate><creator>Kim, Byoungsu</creator><creator>Takechi, Kensuke</creator><creator>Ma, Sichao</creator><creator>Verma, Sumit</creator><creator>Fu, Shiqi</creator><creator>Desai, Amit</creator><creator>Pawate, Ashtamurthy S.</creator><creator>Mizuno, Fuminori</creator><creator>Kenis, Paul J. A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7348-0381</orcidid></search><sort><creationdate>20171109</creationdate><title>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</title><author>Kim, Byoungsu ; Takechi, Kensuke ; Ma, Sichao ; Verma, Sumit ; Fu, Shiqi ; Desai, Amit ; Pawate, Ashtamurthy S. ; Mizuno, Fuminori ; Kenis, Paul J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>batteries</topic><topic>Cathodes</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Current density</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>electrodes</topic><topic>Electrolytes</topic><topic>Gaseous diffusion</topic><topic>Hot pressing</topic><topic>Ionic liquids</topic><topic>lithium</topic><topic>Metal air batteries</topic><topic>modeling</topic><topic>Optimization</topic><topic>Porosity</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byoungsu</creatorcontrib><creatorcontrib>Takechi, Kensuke</creatorcontrib><creatorcontrib>Ma, Sichao</creatorcontrib><creatorcontrib>Verma, Sumit</creatorcontrib><creatorcontrib>Fu, Shiqi</creatorcontrib><creatorcontrib>Desai, Amit</creatorcontrib><creatorcontrib>Pawate, Ashtamurthy S.</creatorcontrib><creatorcontrib>Mizuno, Fuminori</creatorcontrib><creatorcontrib>Kenis, Paul J. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byoungsu</au><au>Takechi, Kensuke</au><au>Ma, Sichao</au><au>Verma, Sumit</au><au>Fu, Shiqi</au><au>Desai, Amit</au><au>Pawate, Ashtamurthy S.</au><au>Mizuno, Fuminori</au><au>Kenis, Paul J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2017-11-09</date><risdate>2017</risdate><volume>10</volume><issue>21</issue><spage>4198</spage><epage>4206</epage><pages>4198-4206</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28941070</pmid><doi>10.1002/cssc.201701255</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7348-0381</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2017-11, Vol.10 (21), p.4198-4206
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1942700672
source Wiley Online Library Journals Frontfile Complete
subjects Air flow
batteries
Cathodes
Computation
Computer programs
Current density
Diffusion layers
Discharge
electrodes
Electrolytes
Gaseous diffusion
Hot pressing
Ionic liquids
lithium
Metal air batteries
modeling
Optimization
Porosity
Rechargeable batteries
title Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Aqueous%20Primary%20Li%E2%80%93Air%20Flow%20Battery%20and%20Optimization%20of%20its%20Cathode%20through%20Experiment%20and%20Modeling&rft.jtitle=ChemSusChem&rft.au=Kim,%20Byoungsu&rft.date=2017-11-09&rft.volume=10&rft.issue=21&rft.spage=4198&rft.epage=4206&rft.pages=4198-4206&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201701255&rft_dat=%3Cproquest_cross%3E1961765120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961765120&rft_id=info:pmid/28941070&rfr_iscdi=true