Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling
A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2017-11, Vol.10 (21), p.4198-4206 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4206 |
---|---|
container_issue | 21 |
container_start_page | 4198 |
container_title | ChemSusChem |
container_volume | 10 |
creator | Kim, Byoungsu Takechi, Kensuke Ma, Sichao Verma, Sumit Fu, Shiqi Desai, Amit Pawate, Ashtamurthy S. Mizuno, Fuminori Kenis, Paul J. A. |
description | A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density.
Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported. |
doi_str_mv | 10.1002/cssc.201701255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1942700672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961765120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EorxWRmSJhSXlOomdeCxReUjlIQESW-QmDnVJ4hI7KjD1JyDxD_tLcCkUiYXJlv3do3vOQWifQJcA-MeZMVnXBxIB8SldQ1skZqFHWfiwvroHpIO2jRkDMOCMbaKOH_OQQARb6OlK1_PZe--5lbo1-KZRlWhe8UDNZx891eDTUk_xibBWuldR5_h6YlWl3oRVusa6wMoanAg70rnEdtTo9nGE-y8T6YRkbb9GLt1fqerHXbRRiNLIve9zB92f9u-Sc29wfXaR9AZe5paiXhwQCJgzRMM4lxxin8a8KEAMgcVhRHnM-JANqcgCDiQsOA0dlZMAikIEVAQ76GipO2m082VsWimTybIU9cJkSnjoRy6MyHfo4R90rNumdts5ipGIUeKDo7pLKmu0MY0s0skyp5RAuqghXdSQrmpwAwffsu2wkvkK_8ndAXwJTFUpX_-RS5Pb2-RX_BPylpSe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961765120</pqid></control><display><type>article</type><title>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Byoungsu ; Takechi, Kensuke ; Ma, Sichao ; Verma, Sumit ; Fu, Shiqi ; Desai, Amit ; Pawate, Ashtamurthy S. ; Mizuno, Fuminori ; Kenis, Paul J. A.</creator><creatorcontrib>Kim, Byoungsu ; Takechi, Kensuke ; Ma, Sichao ; Verma, Sumit ; Fu, Shiqi ; Desai, Amit ; Pawate, Ashtamurthy S. ; Mizuno, Fuminori ; Kenis, Paul J. A.</creatorcontrib><description>A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density.
Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201701255</identifier><identifier>PMID: 28941070</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Air flow ; batteries ; Cathodes ; Computation ; Computer programs ; Current density ; Diffusion layers ; Discharge ; electrodes ; Electrolytes ; Gaseous diffusion ; Hot pressing ; Ionic liquids ; lithium ; Metal air batteries ; modeling ; Optimization ; Porosity ; Rechargeable batteries</subject><ispartof>ChemSusChem, 2017-11, Vol.10 (21), p.4198-4206</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</citedby><cites>FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</cites><orcidid>0000-0001-7348-0381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201701255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201701255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28941070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Byoungsu</creatorcontrib><creatorcontrib>Takechi, Kensuke</creatorcontrib><creatorcontrib>Ma, Sichao</creatorcontrib><creatorcontrib>Verma, Sumit</creatorcontrib><creatorcontrib>Fu, Shiqi</creatorcontrib><creatorcontrib>Desai, Amit</creatorcontrib><creatorcontrib>Pawate, Ashtamurthy S.</creatorcontrib><creatorcontrib>Mizuno, Fuminori</creatorcontrib><creatorcontrib>Kenis, Paul J. A.</creatorcontrib><title>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density.
Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.</description><subject>Air flow</subject><subject>batteries</subject><subject>Cathodes</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Current density</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>electrodes</subject><subject>Electrolytes</subject><subject>Gaseous diffusion</subject><subject>Hot pressing</subject><subject>Ionic liquids</subject><subject>lithium</subject><subject>Metal air batteries</subject><subject>modeling</subject><subject>Optimization</subject><subject>Porosity</subject><subject>Rechargeable batteries</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EorxWRmSJhSXlOomdeCxReUjlIQESW-QmDnVJ4hI7KjD1JyDxD_tLcCkUiYXJlv3do3vOQWifQJcA-MeZMVnXBxIB8SldQ1skZqFHWfiwvroHpIO2jRkDMOCMbaKOH_OQQARb6OlK1_PZe--5lbo1-KZRlWhe8UDNZx891eDTUk_xibBWuldR5_h6YlWl3oRVusa6wMoanAg70rnEdtTo9nGE-y8T6YRkbb9GLt1fqerHXbRRiNLIve9zB92f9u-Sc29wfXaR9AZe5paiXhwQCJgzRMM4lxxin8a8KEAMgcVhRHnM-JANqcgCDiQsOA0dlZMAikIEVAQ76GipO2m082VsWimTybIU9cJkSnjoRy6MyHfo4R90rNumdts5ipGIUeKDo7pLKmu0MY0s0skyp5RAuqghXdSQrmpwAwffsu2wkvkK_8ndAXwJTFUpX_-RS5Pb2-RX_BPylpSe</recordid><startdate>20171109</startdate><enddate>20171109</enddate><creator>Kim, Byoungsu</creator><creator>Takechi, Kensuke</creator><creator>Ma, Sichao</creator><creator>Verma, Sumit</creator><creator>Fu, Shiqi</creator><creator>Desai, Amit</creator><creator>Pawate, Ashtamurthy S.</creator><creator>Mizuno, Fuminori</creator><creator>Kenis, Paul J. A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7348-0381</orcidid></search><sort><creationdate>20171109</creationdate><title>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</title><author>Kim, Byoungsu ; Takechi, Kensuke ; Ma, Sichao ; Verma, Sumit ; Fu, Shiqi ; Desai, Amit ; Pawate, Ashtamurthy S. ; Mizuno, Fuminori ; Kenis, Paul J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-831036701548de9082589ff0ab0684759869b6b5ac39014f954e90d130ffa35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>batteries</topic><topic>Cathodes</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Current density</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>electrodes</topic><topic>Electrolytes</topic><topic>Gaseous diffusion</topic><topic>Hot pressing</topic><topic>Ionic liquids</topic><topic>lithium</topic><topic>Metal air batteries</topic><topic>modeling</topic><topic>Optimization</topic><topic>Porosity</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byoungsu</creatorcontrib><creatorcontrib>Takechi, Kensuke</creatorcontrib><creatorcontrib>Ma, Sichao</creatorcontrib><creatorcontrib>Verma, Sumit</creatorcontrib><creatorcontrib>Fu, Shiqi</creatorcontrib><creatorcontrib>Desai, Amit</creatorcontrib><creatorcontrib>Pawate, Ashtamurthy S.</creatorcontrib><creatorcontrib>Mizuno, Fuminori</creatorcontrib><creatorcontrib>Kenis, Paul J. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byoungsu</au><au>Takechi, Kensuke</au><au>Ma, Sichao</au><au>Verma, Sumit</au><au>Fu, Shiqi</au><au>Desai, Amit</au><au>Pawate, Ashtamurthy S.</au><au>Mizuno, Fuminori</au><au>Kenis, Paul J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2017-11-09</date><risdate>2017</risdate><volume>10</volume><issue>21</issue><spage>4198</spage><epage>4206</epage><pages>4198-4206</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>A primary Li–air battery has been developed with a flowing Li‐ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non‐aqueous Li–air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density.
Let it flow: A new architecture for a lithium–air (Li–air) battery, a flowing electrolyte system, is proposed for improving discharge capacity as well as current density. Also, experimental and computational investigations on optimizing cathodes specifically for the Li–air flow battery are reported.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28941070</pmid><doi>10.1002/cssc.201701255</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7348-0381</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2017-11, Vol.10 (21), p.4198-4206 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_1942700672 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Air flow batteries Cathodes Computation Computer programs Current density Diffusion layers Discharge electrodes Electrolytes Gaseous diffusion Hot pressing Ionic liquids lithium Metal air batteries modeling Optimization Porosity Rechargeable batteries |
title | Non‐Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Aqueous%20Primary%20Li%E2%80%93Air%20Flow%20Battery%20and%20Optimization%20of%20its%20Cathode%20through%20Experiment%20and%20Modeling&rft.jtitle=ChemSusChem&rft.au=Kim,%20Byoungsu&rft.date=2017-11-09&rft.volume=10&rft.issue=21&rft.spage=4198&rft.epage=4206&rft.pages=4198-4206&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201701255&rft_dat=%3Cproquest_cross%3E1961765120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961765120&rft_id=info:pmid/28941070&rfr_iscdi=true |