A hybrid clustering approach for multivariate time series – A case study applied to failure analysis in a gas turbine
A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expe...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2017-11, Vol.71 (Pt 2), p.513-529 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | Pt 2 |
container_start_page | 513 |
container_title | ISA transactions |
container_volume | 71 |
creator | Fontes, Cristiano Hora Budman, Hector |
description | A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expected changes in operation conditions. A novel method for clustering MTS based on a combination between SPCA and the average-based Euclidean distance (AED) within a fuzzy clustering approach is proposed. Case studies involving either simulated or real industrial data collected from a large scale gas turbine are used to illustrate that the hybrid approach enhances the ability to recognize normal and fault operating patterns. This paper also proposes an oversampling procedure to create synthetic multivariate time series that can be useful in commonly occurring situations involving unbalanced data sets.
•Real case study comprising the fault detection in a gas turbine.•Comprehensive and novel method for clustering multivariate time series.•Proposed approach allows adjusting the effects of two different data features.•Results show the ability of the method in recognizing normal and fault patterns.•Proposed approach for oversampling data using multivariate time series. |
doi_str_mv | 10.1016/j.isatra.2017.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1941100095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057817305530</els_id><sourcerecordid>1941100095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-26d52deb4a3ed9a5051987eaee58180e2dc551d0f44b39ff66c0048e38ad6b3c3</originalsourceid><addsrcrecordid>eNp9kMtuFDEQRS0EIpPAHyDkJZvulN0ve4M0igJEisQG1la1XZ141I_BdgfNLv-QP-RL8GgCy6xKKp1bV3UY-yCgFCDay13pI6aApQTRlaBLgPoV2wjV6UKClK_ZBkDoAppOnbHzGHcAIBut3rIzqbTsVF1t2O8tvz_0wTtuxzUmCn6-47jfhwXtPR-WwKd1TP4Bg8dEPPmJeMwURf7n8YlvucWYN2l1h2Ns9OR4WviAflwDcZxxPEQfuZ858juMPK2h9zO9Y28GHCO9f54X7OeX6x9X34rb719vrra3ha1amQrZukY66musyGlsoBFadYREjRIKSDrbNMLBUNd9pYehbW3WoKhS6Nq-stUF-3S6mz_6tVJMZvLR0jjiTMsajdC1EFmMbjJan1AblhgDDWYf_IThYASYo3KzMyfl5qjcgDa5K8c-Pjes_UTuf-if4wx8PgGU_3zwFEy0nmZLzgeyybjFv9zwF4Oolq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941100095</pqid></control><display><type>article</type><title>A hybrid clustering approach for multivariate time series – A case study applied to failure analysis in a gas turbine</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fontes, Cristiano Hora ; Budman, Hector</creator><creatorcontrib>Fontes, Cristiano Hora ; Budman, Hector</creatorcontrib><description>A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expected changes in operation conditions. A novel method for clustering MTS based on a combination between SPCA and the average-based Euclidean distance (AED) within a fuzzy clustering approach is proposed. Case studies involving either simulated or real industrial data collected from a large scale gas turbine are used to illustrate that the hybrid approach enhances the ability to recognize normal and fault operating patterns. This paper also proposes an oversampling procedure to create synthetic multivariate time series that can be useful in commonly occurring situations involving unbalanced data sets.
•Real case study comprising the fault detection in a gas turbine.•Comprehensive and novel method for clustering multivariate time series.•Proposed approach allows adjusting the effects of two different data features.•Results show the ability of the method in recognizing normal and fault patterns.•Proposed approach for oversampling data using multivariate time series.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2017.09.004</identifier><identifier>PMID: 28927843</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Fault detection ; Fuzzy clustering ; Gas turbine ; Multivariate time series ; Oversampling ; PCA-based similarity</subject><ispartof>ISA transactions, 2017-11, Vol.71 (Pt 2), p.513-529</ispartof><rights>2017 ISA</rights><rights>Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-26d52deb4a3ed9a5051987eaee58180e2dc551d0f44b39ff66c0048e38ad6b3c3</citedby><cites>FETCH-LOGICAL-c362t-26d52deb4a3ed9a5051987eaee58180e2dc551d0f44b39ff66c0048e38ad6b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057817305530$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28927843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fontes, Cristiano Hora</creatorcontrib><creatorcontrib>Budman, Hector</creatorcontrib><title>A hybrid clustering approach for multivariate time series – A case study applied to failure analysis in a gas turbine</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expected changes in operation conditions. A novel method for clustering MTS based on a combination between SPCA and the average-based Euclidean distance (AED) within a fuzzy clustering approach is proposed. Case studies involving either simulated or real industrial data collected from a large scale gas turbine are used to illustrate that the hybrid approach enhances the ability to recognize normal and fault operating patterns. This paper also proposes an oversampling procedure to create synthetic multivariate time series that can be useful in commonly occurring situations involving unbalanced data sets.
•Real case study comprising the fault detection in a gas turbine.•Comprehensive and novel method for clustering multivariate time series.•Proposed approach allows adjusting the effects of two different data features.•Results show the ability of the method in recognizing normal and fault patterns.•Proposed approach for oversampling data using multivariate time series.</description><subject>Fault detection</subject><subject>Fuzzy clustering</subject><subject>Gas turbine</subject><subject>Multivariate time series</subject><subject>Oversampling</subject><subject>PCA-based similarity</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtuFDEQRS0EIpPAHyDkJZvulN0ve4M0igJEisQG1la1XZ141I_BdgfNLv-QP-RL8GgCy6xKKp1bV3UY-yCgFCDay13pI6aApQTRlaBLgPoV2wjV6UKClK_ZBkDoAppOnbHzGHcAIBut3rIzqbTsVF1t2O8tvz_0wTtuxzUmCn6-47jfhwXtPR-WwKd1TP4Bg8dEPPmJeMwURf7n8YlvucWYN2l1h2Ns9OR4WviAflwDcZxxPEQfuZ858juMPK2h9zO9Y28GHCO9f54X7OeX6x9X34rb719vrra3ha1amQrZukY66musyGlsoBFadYREjRIKSDrbNMLBUNd9pYehbW3WoKhS6Nq-stUF-3S6mz_6tVJMZvLR0jjiTMsajdC1EFmMbjJan1AblhgDDWYf_IThYASYo3KzMyfl5qjcgDa5K8c-Pjes_UTuf-if4wx8PgGU_3zwFEy0nmZLzgeyybjFv9zwF4Oolq8</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Fontes, Cristiano Hora</creator><creator>Budman, Hector</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>A hybrid clustering approach for multivariate time series – A case study applied to failure analysis in a gas turbine</title><author>Fontes, Cristiano Hora ; Budman, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-26d52deb4a3ed9a5051987eaee58180e2dc551d0f44b39ff66c0048e38ad6b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fault detection</topic><topic>Fuzzy clustering</topic><topic>Gas turbine</topic><topic>Multivariate time series</topic><topic>Oversampling</topic><topic>PCA-based similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontes, Cristiano Hora</creatorcontrib><creatorcontrib>Budman, Hector</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fontes, Cristiano Hora</au><au>Budman, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid clustering approach for multivariate time series – A case study applied to failure analysis in a gas turbine</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2017-11</date><risdate>2017</risdate><volume>71</volume><issue>Pt 2</issue><spage>513</spage><epage>529</epage><pages>513-529</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expected changes in operation conditions. A novel method for clustering MTS based on a combination between SPCA and the average-based Euclidean distance (AED) within a fuzzy clustering approach is proposed. Case studies involving either simulated or real industrial data collected from a large scale gas turbine are used to illustrate that the hybrid approach enhances the ability to recognize normal and fault operating patterns. This paper also proposes an oversampling procedure to create synthetic multivariate time series that can be useful in commonly occurring situations involving unbalanced data sets.
•Real case study comprising the fault detection in a gas turbine.•Comprehensive and novel method for clustering multivariate time series.•Proposed approach allows adjusting the effects of two different data features.•Results show the ability of the method in recognizing normal and fault patterns.•Proposed approach for oversampling data using multivariate time series.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28927843</pmid><doi>10.1016/j.isatra.2017.09.004</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2017-11, Vol.71 (Pt 2), p.513-529 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_1941100095 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Fault detection Fuzzy clustering Gas turbine Multivariate time series Oversampling PCA-based similarity |
title | A hybrid clustering approach for multivariate time series – A case study applied to failure analysis in a gas turbine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20clustering%20approach%20for%20multivariate%20time%20series%20%E2%80%93%20A%20case%20study%20applied%20to%20failure%20analysis%20in%20a%20gas%20turbine&rft.jtitle=ISA%20transactions&rft.au=Fontes,%20Cristiano%20Hora&rft.date=2017-11&rft.volume=71&rft.issue=Pt%202&rft.spage=513&rft.epage=529&rft.pages=513-529&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2017.09.004&rft_dat=%3Cproquest_cross%3E1941100095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941100095&rft_id=info:pmid/28927843&rft_els_id=S0019057817305530&rfr_iscdi=true |