The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction

The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2018-01, Vol.122 (2), p.543-547
Hauptverfasser: Kwon, Sangku, Lee, Kyung Eun, Lee, Hyunsoo, Koh, Sang Joon, Ko, Jae-Hyeon, Kim, Yong-Hyun, Kim, Sang Ouk, Park, Jeong Young
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 2
container_start_page 543
container_title The journal of physical chemistry. B
container_volume 122
creator Kwon, Sangku
Lee, Kyung Eun
Lee, Hyunsoo
Koh, Sang Joon
Ko, Jae-Hyeon
Kim, Yong-Hyun
Kim, Sang Ouk
Park, Jeong Young
description The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.
doi_str_mv 10.1021/acs.jpcb.7b04609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1941091788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941091788</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-425404e318c92768be9d07386776d780c67937ba6c85b2efff88b8035b7030f23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vniRHD3a-pG2SHmVsUxAHMr2WNH2hnf1l04L-93Zb9ebhkUf4fL_wPoRcM5gz4OxeGzffNSaZywQCAdEJmbKQgzeMPB13wUBMyIVzOwAeciXOyYSriAsuYEretxnSpbVoOlpbus1y81Ghc1RXKV1kWOZGF_QV0950eV3tmXWrmwwrpJuvPEU6fL7oqnYDh3TV5gfukpxZXTi8Gt8ZeVstt4tH73mzflo8PHval37nBTwMIECfKRNxKVSCUQrSV0JKkUoFRsjIl4kWRoUJR2utUokCP0wk-GC5PyO3x96mrT97dF1c5s5gUegK697FLAoYREwqNaBwRE1bO9eijZs2L3X7HTOI9zbjwWa8txmPNofIzdjeJyWmf4FffQNwdwQO0bpvq-HY__t-AMVFfuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941091788</pqid></control><display><type>article</type><title>The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction</title><source>ACS Publications</source><creator>Kwon, Sangku ; Lee, Kyung Eun ; Lee, Hyunsoo ; Koh, Sang Joon ; Ko, Jae-Hyeon ; Kim, Yong-Hyun ; Kim, Sang Ouk ; Park, Jeong Young</creator><creatorcontrib>Kwon, Sangku ; Lee, Kyung Eun ; Lee, Hyunsoo ; Koh, Sang Joon ; Ko, Jae-Hyeon ; Kim, Yong-Hyun ; Kim, Sang Ouk ; Park, Jeong Young</creatorcontrib><description>The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.7b04609</identifier><identifier>PMID: 28926260</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-01, Vol.122 (2), p.543-547</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-425404e318c92768be9d07386776d780c67937ba6c85b2efff88b8035b7030f23</citedby><cites>FETCH-LOGICAL-a373t-425404e318c92768be9d07386776d780c67937ba6c85b2efff88b8035b7030f23</cites><orcidid>0000-0002-8132-3076 ; 0000-0003-4255-2068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.7b04609$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.7b04609$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28926260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Sangku</creatorcontrib><creatorcontrib>Lee, Kyung Eun</creatorcontrib><creatorcontrib>Lee, Hyunsoo</creatorcontrib><creatorcontrib>Koh, Sang Joon</creatorcontrib><creatorcontrib>Ko, Jae-Hyeon</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><creatorcontrib>Kim, Sang Ouk</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><title>The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vniRHD3a-pG2SHmVsUxAHMr2WNH2hnf1l04L-93Zb9ebhkUf4fL_wPoRcM5gz4OxeGzffNSaZywQCAdEJmbKQgzeMPB13wUBMyIVzOwAeciXOyYSriAsuYEretxnSpbVoOlpbus1y81Ghc1RXKV1kWOZGF_QV0950eV3tmXWrmwwrpJuvPEU6fL7oqnYDh3TV5gfukpxZXTi8Gt8ZeVstt4tH73mzflo8PHval37nBTwMIECfKRNxKVSCUQrSV0JKkUoFRsjIl4kWRoUJR2utUokCP0wk-GC5PyO3x96mrT97dF1c5s5gUegK697FLAoYREwqNaBwRE1bO9eijZs2L3X7HTOI9zbjwWa8txmPNofIzdjeJyWmf4FffQNwdwQO0bpvq-HY__t-AMVFfuw</recordid><startdate>20180118</startdate><enddate>20180118</enddate><creator>Kwon, Sangku</creator><creator>Lee, Kyung Eun</creator><creator>Lee, Hyunsoo</creator><creator>Koh, Sang Joon</creator><creator>Ko, Jae-Hyeon</creator><creator>Kim, Yong-Hyun</creator><creator>Kim, Sang Ouk</creator><creator>Park, Jeong Young</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid></search><sort><creationdate>20180118</creationdate><title>The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction</title><author>Kwon, Sangku ; Lee, Kyung Eun ; Lee, Hyunsoo ; Koh, Sang Joon ; Ko, Jae-Hyeon ; Kim, Yong-Hyun ; Kim, Sang Ouk ; Park, Jeong Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-425404e318c92768be9d07386776d780c67937ba6c85b2efff88b8035b7030f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Sangku</creatorcontrib><creatorcontrib>Lee, Kyung Eun</creatorcontrib><creatorcontrib>Lee, Hyunsoo</creatorcontrib><creatorcontrib>Koh, Sang Joon</creatorcontrib><creatorcontrib>Ko, Jae-Hyeon</creatorcontrib><creatorcontrib>Kim, Yong-Hyun</creatorcontrib><creatorcontrib>Kim, Sang Ouk</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Sangku</au><au>Lee, Kyung Eun</au><au>Lee, Hyunsoo</au><au>Koh, Sang Joon</au><au>Ko, Jae-Hyeon</au><au>Kim, Yong-Hyun</au><au>Kim, Sang Ouk</au><au>Park, Jeong Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-01-18</date><risdate>2018</risdate><volume>122</volume><issue>2</issue><spage>543</spage><epage>547</epage><pages>543-547</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28926260</pmid><doi>10.1021/acs.jpcb.7b04609</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0003-4255-2068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-01, Vol.122 (2), p.543-547
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1941091788
source ACS Publications
title The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Thickness%20and%20Chemical%20Reduction%20of%20Graphene%20Oxide%20on%20Nanoscale%20Friction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Kwon,%20Sangku&rft.date=2018-01-18&rft.volume=122&rft.issue=2&rft.spage=543&rft.epage=547&rft.pages=543-547&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.7b04609&rft_dat=%3Cproquest_cross%3E1941091788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941091788&rft_id=info:pmid/28926260&rfr_iscdi=true