Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster

Wound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2017-11, Vol.6 (22), p.n/a
Hauptverfasser: Kai, Hiroyuki, Yamauchi, Takeshi, Ogawa, Yudai, Tsubota, Ayaka, Magome, Takahiro, Miyake, Takeo, Yamasaki, Kenshi, Nishizawa, Matsuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced healthcare materials
container_volume 6
creator Kai, Hiroyuki
Yamauchi, Takeshi
Ogawa, Yudai
Tsubota, Ayaka
Magome, Takahiro
Miyake, Takeo
Yamasaki, Kenshi
Nishizawa, Matsuhiko
description Wound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulation device for wound healing on skin will make this technology more widely available. Using flexible enzymatic electrodes and stretchable hydrogel, a stretchable bioelectric plaster is fabricated with a built‐in enzymatic biofuel cell (EBFC) that fits to skin and generates ionic current along the surface of the skin by enzymatic electrochemical reactions for more than 12 h. To investigate the efficacy of the fabricated bioelectric plaster, an artificial wound is made on the back skin of a live mouse and the wound healing is observed for 7 d in the presence and absence of the ionic current of the bioelectric plaster. The time course of the wound size as well as the hematoxylin and eosin staining of the skin section reveals that the ionic current of the plaster leads to faster and smoother wound healing. The present work demonstrates a proof of concept for the electrical manipulation of biological functions by EBFCs. Wound healing on skin is accelerated by a plaster device with a built‐in enzymatic biofuel cell that drives ionic current on the wound. Cells in the skin respond to electric current during wound healing processes. A stretchable bioelectric plaster fits to skin and generates ionic current on the wound by enzymatic electrochemical reactions to promote these processes.
doi_str_mv 10.1002/adhm.201700465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1941090556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941090556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-db1217643225316e2559d12f12adac3b387e6eafeade29bd98ca7949c6d36c023</originalsourceid><addsrcrecordid>eNqF0M9P2zAUB3Br2jQQ47rjZGkXLi1-L7EbHwsUisQEEvtxjBz7FQxOAnYi1P8eo5ZO2mW-2JI__ur5y9hXEFMQAo-Nu2-nKGAmRKnkB7aPoHGCSuqPu3Mp9thhSg8iLyVBVfCZ7WGlUasC9tnvubUUKJqBHP_Tj53jSzLBd3e87_jto-94s-aLQHaI3prAbwffjsEMPl-_-OGeG37ie9oCfhNMGih-YZ9WJiQ63O4H7Nf54ufpcnJ1fXF5Or-a2BJQTlwDCDNVFoiyAEUopXaAK0DjjC2aopqRIrMi4wh143RlzUyX2ipXKCuwOGBHm9yn2D-PlIa69Sl_KJiO-jHVoEsQWkipMv3-D33ox9jl6bJSqkKoyjKr6UbZ2KcUaVU_Rd-auK5B1G-l12-l17vS84Nv29ixacnt-HvFGegNePGB1v-Jq-dnyx9_w18B25iMjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966821844</pqid></control><display><type>article</type><title>Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kai, Hiroyuki ; Yamauchi, Takeshi ; Ogawa, Yudai ; Tsubota, Ayaka ; Magome, Takahiro ; Miyake, Takeo ; Yamasaki, Kenshi ; Nishizawa, Matsuhiko</creator><creatorcontrib>Kai, Hiroyuki ; Yamauchi, Takeshi ; Ogawa, Yudai ; Tsubota, Ayaka ; Magome, Takahiro ; Miyake, Takeo ; Yamasaki, Kenshi ; Nishizawa, Matsuhiko</creatorcontrib><description>Wound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulation device for wound healing on skin will make this technology more widely available. Using flexible enzymatic electrodes and stretchable hydrogel, a stretchable bioelectric plaster is fabricated with a built‐in enzymatic biofuel cell (EBFC) that fits to skin and generates ionic current along the surface of the skin by enzymatic electrochemical reactions for more than 12 h. To investigate the efficacy of the fabricated bioelectric plaster, an artificial wound is made on the back skin of a live mouse and the wound healing is observed for 7 d in the presence and absence of the ionic current of the bioelectric plaster. The time course of the wound size as well as the hematoxylin and eosin staining of the skin section reveals that the ionic current of the plaster leads to faster and smoother wound healing. The present work demonstrates a proof of concept for the electrical manipulation of biological functions by EBFCs. Wound healing on skin is accelerated by a plaster device with a built‐in enzymatic biofuel cell that drives ionic current on the wound. Cells in the skin respond to electric current during wound healing processes. A stretchable bioelectric plaster fits to skin and generates ionic current on the wound by enzymatic electrochemical reactions to promote these processes.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201700465</identifier><identifier>PMID: 28929631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biochemical fuel cells ; Bioelectric Energy Sources ; Bioelectricity ; Biofuels ; Biological activity ; Cell adhesion &amp; migration ; Cell migration ; Cell Movement - physiology ; Chemical reactions ; Electric currents ; Electric equipment ; Electric Stimulation - instrumentation ; Electric Stimulation - methods ; Electric Stimulation Therapy - methods ; Electrical equipment ; electrical stimulation ; Electrical stimuli ; Electrochemistry ; Electrophysiological Phenomena - physiology ; enzymatic biofuel cells ; Humans ; Miniaturization ; Miniaturization - methods ; Skin ; Skin - physiopathology ; Stimulation ; Ulcers ; wearable devices ; Wound healing ; Wound Healing - physiology</subject><ispartof>Advanced healthcare materials, 2017-11, Vol.6 (22), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-db1217643225316e2559d12f12adac3b387e6eafeade29bd98ca7949c6d36c023</citedby><cites>FETCH-LOGICAL-c4125-db1217643225316e2559d12f12adac3b387e6eafeade29bd98ca7949c6d36c023</cites><orcidid>0000-0002-9423-0952 ; 0000-0002-5495-4956 ; 0000-0002-3544-9196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201700465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201700465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28929631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Hiroyuki</creatorcontrib><creatorcontrib>Yamauchi, Takeshi</creatorcontrib><creatorcontrib>Ogawa, Yudai</creatorcontrib><creatorcontrib>Tsubota, Ayaka</creatorcontrib><creatorcontrib>Magome, Takahiro</creatorcontrib><creatorcontrib>Miyake, Takeo</creatorcontrib><creatorcontrib>Yamasaki, Kenshi</creatorcontrib><creatorcontrib>Nishizawa, Matsuhiko</creatorcontrib><title>Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Wound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulation device for wound healing on skin will make this technology more widely available. Using flexible enzymatic electrodes and stretchable hydrogel, a stretchable bioelectric plaster is fabricated with a built‐in enzymatic biofuel cell (EBFC) that fits to skin and generates ionic current along the surface of the skin by enzymatic electrochemical reactions for more than 12 h. To investigate the efficacy of the fabricated bioelectric plaster, an artificial wound is made on the back skin of a live mouse and the wound healing is observed for 7 d in the presence and absence of the ionic current of the bioelectric plaster. The time course of the wound size as well as the hematoxylin and eosin staining of the skin section reveals that the ionic current of the plaster leads to faster and smoother wound healing. The present work demonstrates a proof of concept for the electrical manipulation of biological functions by EBFCs. Wound healing on skin is accelerated by a plaster device with a built‐in enzymatic biofuel cell that drives ionic current on the wound. Cells in the skin respond to electric current during wound healing processes. A stretchable bioelectric plaster fits to skin and generates ionic current on the wound by enzymatic electrochemical reactions to promote these processes.</description><subject>Animals</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources</subject><subject>Bioelectricity</subject><subject>Biofuels</subject><subject>Biological activity</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Cell Movement - physiology</subject><subject>Chemical reactions</subject><subject>Electric currents</subject><subject>Electric equipment</subject><subject>Electric Stimulation - instrumentation</subject><subject>Electric Stimulation - methods</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrical equipment</subject><subject>electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Electrochemistry</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>enzymatic biofuel cells</subject><subject>Humans</subject><subject>Miniaturization</subject><subject>Miniaturization - methods</subject><subject>Skin</subject><subject>Skin - physiopathology</subject><subject>Stimulation</subject><subject>Ulcers</subject><subject>wearable devices</subject><subject>Wound healing</subject><subject>Wound Healing - physiology</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M9P2zAUB3Br2jQQ47rjZGkXLi1-L7EbHwsUisQEEvtxjBz7FQxOAnYi1P8eo5ZO2mW-2JI__ur5y9hXEFMQAo-Nu2-nKGAmRKnkB7aPoHGCSuqPu3Mp9thhSg8iLyVBVfCZ7WGlUasC9tnvubUUKJqBHP_Tj53jSzLBd3e87_jto-94s-aLQHaI3prAbwffjsEMPl-_-OGeG37ie9oCfhNMGih-YZ9WJiQ63O4H7Nf54ufpcnJ1fXF5Or-a2BJQTlwDCDNVFoiyAEUopXaAK0DjjC2aopqRIrMi4wh143RlzUyX2ipXKCuwOGBHm9yn2D-PlIa69Sl_KJiO-jHVoEsQWkipMv3-D33ox9jl6bJSqkKoyjKr6UbZ2KcUaVU_Rd-auK5B1G-l12-l17vS84Nv29ixacnt-HvFGegNePGB1v-Jq-dnyx9_w18B25iMjg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Kai, Hiroyuki</creator><creator>Yamauchi, Takeshi</creator><creator>Ogawa, Yudai</creator><creator>Tsubota, Ayaka</creator><creator>Magome, Takahiro</creator><creator>Miyake, Takeo</creator><creator>Yamasaki, Kenshi</creator><creator>Nishizawa, Matsuhiko</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9423-0952</orcidid><orcidid>https://orcid.org/0000-0002-5495-4956</orcidid><orcidid>https://orcid.org/0000-0002-3544-9196</orcidid></search><sort><creationdate>201711</creationdate><title>Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster</title><author>Kai, Hiroyuki ; Yamauchi, Takeshi ; Ogawa, Yudai ; Tsubota, Ayaka ; Magome, Takahiro ; Miyake, Takeo ; Yamasaki, Kenshi ; Nishizawa, Matsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-db1217643225316e2559d12f12adac3b387e6eafeade29bd98ca7949c6d36c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources</topic><topic>Bioelectricity</topic><topic>Biofuels</topic><topic>Biological activity</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Cell Movement - physiology</topic><topic>Chemical reactions</topic><topic>Electric currents</topic><topic>Electric equipment</topic><topic>Electric Stimulation - instrumentation</topic><topic>Electric Stimulation - methods</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrical equipment</topic><topic>electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Electrochemistry</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>enzymatic biofuel cells</topic><topic>Humans</topic><topic>Miniaturization</topic><topic>Miniaturization - methods</topic><topic>Skin</topic><topic>Skin - physiopathology</topic><topic>Stimulation</topic><topic>Ulcers</topic><topic>wearable devices</topic><topic>Wound healing</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Hiroyuki</creatorcontrib><creatorcontrib>Yamauchi, Takeshi</creatorcontrib><creatorcontrib>Ogawa, Yudai</creatorcontrib><creatorcontrib>Tsubota, Ayaka</creatorcontrib><creatorcontrib>Magome, Takahiro</creatorcontrib><creatorcontrib>Miyake, Takeo</creatorcontrib><creatorcontrib>Yamasaki, Kenshi</creatorcontrib><creatorcontrib>Nishizawa, Matsuhiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Hiroyuki</au><au>Yamauchi, Takeshi</au><au>Ogawa, Yudai</au><au>Tsubota, Ayaka</au><au>Magome, Takahiro</au><au>Miyake, Takeo</au><au>Yamasaki, Kenshi</au><au>Nishizawa, Matsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-11</date><risdate>2017</risdate><volume>6</volume><issue>22</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Wound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulation device for wound healing on skin will make this technology more widely available. Using flexible enzymatic electrodes and stretchable hydrogel, a stretchable bioelectric plaster is fabricated with a built‐in enzymatic biofuel cell (EBFC) that fits to skin and generates ionic current along the surface of the skin by enzymatic electrochemical reactions for more than 12 h. To investigate the efficacy of the fabricated bioelectric plaster, an artificial wound is made on the back skin of a live mouse and the wound healing is observed for 7 d in the presence and absence of the ionic current of the bioelectric plaster. The time course of the wound size as well as the hematoxylin and eosin staining of the skin section reveals that the ionic current of the plaster leads to faster and smoother wound healing. The present work demonstrates a proof of concept for the electrical manipulation of biological functions by EBFCs. Wound healing on skin is accelerated by a plaster device with a built‐in enzymatic biofuel cell that drives ionic current on the wound. Cells in the skin respond to electric current during wound healing processes. A stretchable bioelectric plaster fits to skin and generates ionic current on the wound by enzymatic electrochemical reactions to promote these processes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28929631</pmid><doi>10.1002/adhm.201700465</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9423-0952</orcidid><orcidid>https://orcid.org/0000-0002-5495-4956</orcidid><orcidid>https://orcid.org/0000-0002-3544-9196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2017-11, Vol.6 (22), p.n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1941090556
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biochemical fuel cells
Bioelectric Energy Sources
Bioelectricity
Biofuels
Biological activity
Cell adhesion & migration
Cell migration
Cell Movement - physiology
Chemical reactions
Electric currents
Electric equipment
Electric Stimulation - instrumentation
Electric Stimulation - methods
Electric Stimulation Therapy - methods
Electrical equipment
electrical stimulation
Electrical stimuli
Electrochemistry
Electrophysiological Phenomena - physiology
enzymatic biofuel cells
Humans
Miniaturization
Miniaturization - methods
Skin
Skin - physiopathology
Stimulation
Ulcers
wearable devices
Wound healing
Wound Healing - physiology
title Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Wound%20Healing%20on%20Skin%20by%20Electrical%20Stimulation%20with%20a%20Bioelectric%20Plaster&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Kai,%20Hiroyuki&rft.date=2017-11&rft.volume=6&rft.issue=22&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201700465&rft_dat=%3Cproquest_cross%3E1941090556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966821844&rft_id=info:pmid/28929631&rfr_iscdi=true