Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California
Copiapite-group minerals of the general formula AR 4(SO 4) 6(OH) 2· nH 2O, where A is predominantly Mg, Fe 2+, or 0.67Al 3+, R is predominantly Fe 3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron...
Gespeichert in:
Veröffentlicht in: | Chemical geology 2005-02, Vol.215 (1), p.387-405 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 1 |
container_start_page | 387 |
container_title | Chemical geology |
container_volume | 215 |
creator | Jamieson, Heather E. Robinson, Clare Alpers, Charles N. McCleskey, R. Blaine Nordstrom, D. Kirk Peterson, Ronald C. |
description | Copiapite-group minerals of the general formula
AR
4(SO
4)
6(OH)
2·
nH
2O, where
A is predominantly Mg, Fe
2+, or 0.67Al
3+,
R is predominantly Fe
3+, and
n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe
3+=149 g L
−1, Fe
T=162 g L
−1) and has a density of 1.52 g mL
−1. The composition of the pore water is interpreted in the context of published phase relations in the Fe
2O
3–SO
3–H
2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition (
n=5) of the magnesiocopiapite is (Mg
0.90Fe
2+
0.17Zn
0.02Cu
0.01)
∑1.10(Fe
3+
3.83Al
0.09)
∑3.92(SO
4)
6.00(OH)
1.96·20H
2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm). |
doi_str_mv | 10.1016/j.chemgeo.2004.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19410700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009254104004206</els_id><sourcerecordid>19410700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEg-cSLFrpOmPiFU8SdRISE4W46zabdK7GC7_LwAz41De-e0mtXMrPYj5JyzCWd8drWZmDV0K3CTKWN52k0Y4wdkxOflNJvNxeyQjBhjMpsWOT8mJyFskuSiKEbkZ6k3zlNtaxq9NkChhQ5spMZ1vQsY0VnqmiR71D1GyFbebXvaoQWv2_CXNA6-MES0K_qpI3jaeNfRuAb6gmbduWQZ_Jf00ae2pdvaqNFe0oVusXHeoj4lR01qg7P9HJO3u9vXxUP29Hz_uLh5ynTOWcykNqyQJcjSABemZBVMa6Er3nAp51Lyuqkgn5mClTIXQtSiLqrCVDpRqLisxZhc7Hp77963EKLqMBhoW23BbYPiMt0pGUvGYmc03oXgoVG9x077b8WZGqirjdpTVwP1YT0wHZPrXQ7SFx8IXgWDYA3U6MFEVTv8p-EX-g-QZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19410700</pqid></control><display><type>article</type><title>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jamieson, Heather E. ; Robinson, Clare ; Alpers, Charles N. ; McCleskey, R. Blaine ; Nordstrom, D. Kirk ; Peterson, Ronald C.</creator><creatorcontrib>Jamieson, Heather E. ; Robinson, Clare ; Alpers, Charles N. ; McCleskey, R. Blaine ; Nordstrom, D. Kirk ; Peterson, Ronald C.</creatorcontrib><description>Copiapite-group minerals of the general formula
AR
4(SO
4)
6(OH)
2·
nH
2O, where
A is predominantly Mg, Fe
2+, or 0.67Al
3+,
R is predominantly Fe
3+, and
n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe
3+=149 g L
−1, Fe
T=162 g L
−1) and has a density of 1.52 g mL
−1. The composition of the pore water is interpreted in the context of published phase relations in the Fe
2O
3–SO
3–H
2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition (
n=5) of the magnesiocopiapite is (Mg
0.90Fe
2+
0.17Zn
0.02Cu
0.01)
∑1.10(Fe
3+
3.83Al
0.09)
∑3.92(SO
4)
6.00(OH)
1.96·20H
2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).</description><identifier>ISSN: 0009-2541</identifier><identifier>EISSN: 1872-6836</identifier><identifier>DOI: 10.1016/j.chemgeo.2004.10.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acid mine drainage ; Copiapite group ; Fe sulfates ; Trace elements</subject><ispartof>Chemical geology, 2005-02, Vol.215 (1), p.387-405</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</citedby><cites>FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemgeo.2004.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Jamieson, Heather E.</creatorcontrib><creatorcontrib>Robinson, Clare</creatorcontrib><creatorcontrib>Alpers, Charles N.</creatorcontrib><creatorcontrib>McCleskey, R. Blaine</creatorcontrib><creatorcontrib>Nordstrom, D. Kirk</creatorcontrib><creatorcontrib>Peterson, Ronald C.</creatorcontrib><title>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</title><title>Chemical geology</title><description>Copiapite-group minerals of the general formula
AR
4(SO
4)
6(OH)
2·
nH
2O, where
A is predominantly Mg, Fe
2+, or 0.67Al
3+,
R is predominantly Fe
3+, and
n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe
3+=149 g L
−1, Fe
T=162 g L
−1) and has a density of 1.52 g mL
−1. The composition of the pore water is interpreted in the context of published phase relations in the Fe
2O
3–SO
3–H
2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition (
n=5) of the magnesiocopiapite is (Mg
0.90Fe
2+
0.17Zn
0.02Cu
0.01)
∑1.10(Fe
3+
3.83Al
0.09)
∑3.92(SO
4)
6.00(OH)
1.96·20H
2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).</description><subject>Acid mine drainage</subject><subject>Copiapite group</subject><subject>Fe sulfates</subject><subject>Trace elements</subject><issn>0009-2541</issn><issn>1872-6836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCEg-cSLFrpOmPiFU8SdRISE4W46zabdK7GC7_LwAz41De-e0mtXMrPYj5JyzCWd8drWZmDV0K3CTKWN52k0Y4wdkxOflNJvNxeyQjBhjMpsWOT8mJyFskuSiKEbkZ6k3zlNtaxq9NkChhQ5spMZ1vQsY0VnqmiR71D1GyFbebXvaoQWv2_CXNA6-MES0K_qpI3jaeNfRuAb6gmbduWQZ_Jf00ae2pdvaqNFe0oVusXHeoj4lR01qg7P9HJO3u9vXxUP29Hz_uLh5ynTOWcykNqyQJcjSABemZBVMa6Er3nAp51Lyuqkgn5mClTIXQtSiLqrCVDpRqLisxZhc7Hp77963EKLqMBhoW23BbYPiMt0pGUvGYmc03oXgoVG9x077b8WZGqirjdpTVwP1YT0wHZPrXQ7SFx8IXgWDYA3U6MFEVTv8p-EX-g-QZw</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Jamieson, Heather E.</creator><creator>Robinson, Clare</creator><creator>Alpers, Charles N.</creator><creator>McCleskey, R. Blaine</creator><creator>Nordstrom, D. Kirk</creator><creator>Peterson, Ronald C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20050215</creationdate><title>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</title><author>Jamieson, Heather E. ; Robinson, Clare ; Alpers, Charles N. ; McCleskey, R. Blaine ; Nordstrom, D. Kirk ; Peterson, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acid mine drainage</topic><topic>Copiapite group</topic><topic>Fe sulfates</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamieson, Heather E.</creatorcontrib><creatorcontrib>Robinson, Clare</creatorcontrib><creatorcontrib>Alpers, Charles N.</creatorcontrib><creatorcontrib>McCleskey, R. Blaine</creatorcontrib><creatorcontrib>Nordstrom, D. Kirk</creatorcontrib><creatorcontrib>Peterson, Ronald C.</creatorcontrib><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Chemical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamieson, Heather E.</au><au>Robinson, Clare</au><au>Alpers, Charles N.</au><au>McCleskey, R. Blaine</au><au>Nordstrom, D. Kirk</au><au>Peterson, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</atitle><jtitle>Chemical geology</jtitle><date>2005-02-15</date><risdate>2005</risdate><volume>215</volume><issue>1</issue><spage>387</spage><epage>405</epage><pages>387-405</pages><issn>0009-2541</issn><eissn>1872-6836</eissn><abstract>Copiapite-group minerals of the general formula
AR
4(SO
4)
6(OH)
2·
nH
2O, where
A is predominantly Mg, Fe
2+, or 0.67Al
3+,
R is predominantly Fe
3+, and
n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe
3+=149 g L
−1, Fe
T=162 g L
−1) and has a density of 1.52 g mL
−1. The composition of the pore water is interpreted in the context of published phase relations in the Fe
2O
3–SO
3–H
2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition (
n=5) of the magnesiocopiapite is (Mg
0.90Fe
2+
0.17Zn
0.02Cu
0.01)
∑1.10(Fe
3+
3.83Al
0.09)
∑3.92(SO
4)
6.00(OH)
1.96·20H
2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.chemgeo.2004.10.001</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2541 |
ispartof | Chemical geology, 2005-02, Vol.215 (1), p.387-405 |
issn | 0009-2541 1872-6836 |
language | eng |
recordid | cdi_proquest_miscellaneous_19410700 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acid mine drainage Copiapite group Fe sulfates Trace elements |
title | Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Major%20and%20trace%20element%20composition%20of%20copiapite-group%20minerals%20and%20coexisting%20water%20from%20the%20Richmond%20mine,%20Iron%20Mountain,%20California&rft.jtitle=Chemical%20geology&rft.au=Jamieson,%20Heather%20E.&rft.date=2005-02-15&rft.volume=215&rft.issue=1&rft.spage=387&rft.epage=405&rft.pages=387-405&rft.issn=0009-2541&rft.eissn=1872-6836&rft_id=info:doi/10.1016/j.chemgeo.2004.10.001&rft_dat=%3Cproquest_cross%3E19410700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19410700&rft_id=info:pmid/&rft_els_id=S0009254104004206&rfr_iscdi=true |