Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California

Copiapite-group minerals of the general formula AR 4(SO 4) 6(OH) 2· nH 2O, where A is predominantly Mg, Fe 2+, or 0.67Al 3+, R is predominantly Fe 3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical geology 2005-02, Vol.215 (1), p.387-405
Hauptverfasser: Jamieson, Heather E., Robinson, Clare, Alpers, Charles N., McCleskey, R. Blaine, Nordstrom, D. Kirk, Peterson, Ronald C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 1
container_start_page 387
container_title Chemical geology
container_volume 215
creator Jamieson, Heather E.
Robinson, Clare
Alpers, Charles N.
McCleskey, R. Blaine
Nordstrom, D. Kirk
Peterson, Ronald C.
description Copiapite-group minerals of the general formula AR 4(SO 4) 6(OH) 2· nH 2O, where A is predominantly Mg, Fe 2+, or 0.67Al 3+, R is predominantly Fe 3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe 3+=149 g L −1, Fe T=162 g L −1) and has a density of 1.52 g mL −1. The composition of the pore water is interpreted in the context of published phase relations in the Fe 2O 3–SO 3–H 2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition ( n=5) of the magnesiocopiapite is (Mg 0.90Fe 2+ 0.17Zn 0.02Cu 0.01) ∑1.10(Fe 3+ 3.83Al 0.09) ∑3.92(SO 4) 6.00(OH) 1.96·20H 2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).
doi_str_mv 10.1016/j.chemgeo.2004.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19410700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009254104004206</els_id><sourcerecordid>19410700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEg-cSLFrpOmPiFU8SdRISE4W46zabdK7GC7_LwAz41De-e0mtXMrPYj5JyzCWd8drWZmDV0K3CTKWN52k0Y4wdkxOflNJvNxeyQjBhjMpsWOT8mJyFskuSiKEbkZ6k3zlNtaxq9NkChhQ5spMZ1vQsY0VnqmiR71D1GyFbebXvaoQWv2_CXNA6-MES0K_qpI3jaeNfRuAb6gmbduWQZ_Jf00ae2pdvaqNFe0oVusXHeoj4lR01qg7P9HJO3u9vXxUP29Hz_uLh5ynTOWcykNqyQJcjSABemZBVMa6Er3nAp51Lyuqkgn5mClTIXQtSiLqrCVDpRqLisxZhc7Hp77963EKLqMBhoW23BbYPiMt0pGUvGYmc03oXgoVG9x077b8WZGqirjdpTVwP1YT0wHZPrXQ7SFx8IXgWDYA3U6MFEVTv8p-EX-g-QZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19410700</pqid></control><display><type>article</type><title>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jamieson, Heather E. ; Robinson, Clare ; Alpers, Charles N. ; McCleskey, R. Blaine ; Nordstrom, D. Kirk ; Peterson, Ronald C.</creator><creatorcontrib>Jamieson, Heather E. ; Robinson, Clare ; Alpers, Charles N. ; McCleskey, R. Blaine ; Nordstrom, D. Kirk ; Peterson, Ronald C.</creatorcontrib><description>Copiapite-group minerals of the general formula AR 4(SO 4) 6(OH) 2· nH 2O, where A is predominantly Mg, Fe 2+, or 0.67Al 3+, R is predominantly Fe 3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe 3+=149 g L −1, Fe T=162 g L −1) and has a density of 1.52 g mL −1. The composition of the pore water is interpreted in the context of published phase relations in the Fe 2O 3–SO 3–H 2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition ( n=5) of the magnesiocopiapite is (Mg 0.90Fe 2+ 0.17Zn 0.02Cu 0.01) ∑1.10(Fe 3+ 3.83Al 0.09) ∑3.92(SO 4) 6.00(OH) 1.96·20H 2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).</description><identifier>ISSN: 0009-2541</identifier><identifier>EISSN: 1872-6836</identifier><identifier>DOI: 10.1016/j.chemgeo.2004.10.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acid mine drainage ; Copiapite group ; Fe sulfates ; Trace elements</subject><ispartof>Chemical geology, 2005-02, Vol.215 (1), p.387-405</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</citedby><cites>FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemgeo.2004.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Jamieson, Heather E.</creatorcontrib><creatorcontrib>Robinson, Clare</creatorcontrib><creatorcontrib>Alpers, Charles N.</creatorcontrib><creatorcontrib>McCleskey, R. Blaine</creatorcontrib><creatorcontrib>Nordstrom, D. Kirk</creatorcontrib><creatorcontrib>Peterson, Ronald C.</creatorcontrib><title>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</title><title>Chemical geology</title><description>Copiapite-group minerals of the general formula AR 4(SO 4) 6(OH) 2· nH 2O, where A is predominantly Mg, Fe 2+, or 0.67Al 3+, R is predominantly Fe 3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe 3+=149 g L −1, Fe T=162 g L −1) and has a density of 1.52 g mL −1. The composition of the pore water is interpreted in the context of published phase relations in the Fe 2O 3–SO 3–H 2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition ( n=5) of the magnesiocopiapite is (Mg 0.90Fe 2+ 0.17Zn 0.02Cu 0.01) ∑1.10(Fe 3+ 3.83Al 0.09) ∑3.92(SO 4) 6.00(OH) 1.96·20H 2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).</description><subject>Acid mine drainage</subject><subject>Copiapite group</subject><subject>Fe sulfates</subject><subject>Trace elements</subject><issn>0009-2541</issn><issn>1872-6836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCEg-cSLFrpOmPiFU8SdRISE4W46zabdK7GC7_LwAz41De-e0mtXMrPYj5JyzCWd8drWZmDV0K3CTKWN52k0Y4wdkxOflNJvNxeyQjBhjMpsWOT8mJyFskuSiKEbkZ6k3zlNtaxq9NkChhQ5spMZ1vQsY0VnqmiR71D1GyFbebXvaoQWv2_CXNA6-MES0K_qpI3jaeNfRuAb6gmbduWQZ_Jf00ae2pdvaqNFe0oVusXHeoj4lR01qg7P9HJO3u9vXxUP29Hz_uLh5ynTOWcykNqyQJcjSABemZBVMa6Er3nAp51Lyuqkgn5mClTIXQtSiLqrCVDpRqLisxZhc7Hp77963EKLqMBhoW23BbYPiMt0pGUvGYmc03oXgoVG9x077b8WZGqirjdpTVwP1YT0wHZPrXQ7SFx8IXgWDYA3U6MFEVTv8p-EX-g-QZw</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Jamieson, Heather E.</creator><creator>Robinson, Clare</creator><creator>Alpers, Charles N.</creator><creator>McCleskey, R. Blaine</creator><creator>Nordstrom, D. Kirk</creator><creator>Peterson, Ronald C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20050215</creationdate><title>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</title><author>Jamieson, Heather E. ; Robinson, Clare ; Alpers, Charles N. ; McCleskey, R. Blaine ; Nordstrom, D. Kirk ; Peterson, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-9ac0597e97ce13c70be2d3ab1f1998991dfbe46c50794333d3d5b5cba683b19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acid mine drainage</topic><topic>Copiapite group</topic><topic>Fe sulfates</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamieson, Heather E.</creatorcontrib><creatorcontrib>Robinson, Clare</creatorcontrib><creatorcontrib>Alpers, Charles N.</creatorcontrib><creatorcontrib>McCleskey, R. Blaine</creatorcontrib><creatorcontrib>Nordstrom, D. Kirk</creatorcontrib><creatorcontrib>Peterson, Ronald C.</creatorcontrib><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Chemical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamieson, Heather E.</au><au>Robinson, Clare</au><au>Alpers, Charles N.</au><au>McCleskey, R. Blaine</au><au>Nordstrom, D. Kirk</au><au>Peterson, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California</atitle><jtitle>Chemical geology</jtitle><date>2005-02-15</date><risdate>2005</risdate><volume>215</volume><issue>1</issue><spage>387</spage><epage>405</epage><pages>387-405</pages><issn>0009-2541</issn><eissn>1872-6836</eissn><abstract>Copiapite-group minerals of the general formula AR 4(SO 4) 6(OH) 2· nH 2O, where A is predominantly Mg, Fe 2+, or 0.67Al 3+, R is predominantly Fe 3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe 3+=149 g L −1, Fe T=162 g L −1) and has a density of 1.52 g mL −1. The composition of the pore water is interpreted in the context of published phase relations in the Fe 2O 3–SO 3–H 2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 μm and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition ( n=5) of the magnesiocopiapite is (Mg 0.90Fe 2+ 0.17Zn 0.02Cu 0.01) ∑1.10(Fe 3+ 3.83Al 0.09) ∑3.92(SO 4) 6.00(OH) 1.96·20H 2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.chemgeo.2004.10.001</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2541
ispartof Chemical geology, 2005-02, Vol.215 (1), p.387-405
issn 0009-2541
1872-6836
language eng
recordid cdi_proquest_miscellaneous_19410700
source Elsevier ScienceDirect Journals Complete
subjects Acid mine drainage
Copiapite group
Fe sulfates
Trace elements
title Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Major%20and%20trace%20element%20composition%20of%20copiapite-group%20minerals%20and%20coexisting%20water%20from%20the%20Richmond%20mine,%20Iron%20Mountain,%20California&rft.jtitle=Chemical%20geology&rft.au=Jamieson,%20Heather%20E.&rft.date=2005-02-15&rft.volume=215&rft.issue=1&rft.spage=387&rft.epage=405&rft.pages=387-405&rft.issn=0009-2541&rft.eissn=1872-6836&rft_id=info:doi/10.1016/j.chemgeo.2004.10.001&rft_dat=%3Cproquest_cross%3E19410700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19410700&rft_id=info:pmid/&rft_els_id=S0009254104004206&rfr_iscdi=true