Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images

Purpose We examined the sensitivity and specificity of an automated algorithm for detecting referral‐warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Methods Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta ophthalmologica (Oxford, England) England), 2018-03, Vol.96 (2), p.e168-e173
Hauptverfasser: Wang, Kang, Jayadev, Chaitra, Nittala, Muneeswar G., Velaga, Swetha B., Ramachandra, Chaithanya A., Bhaskaranand, Malavika, Bhat, Sandeep, Solanki, Kaushal, Sadda, SriniVas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e173
container_issue 2
container_start_page e168
container_title Acta ophthalmologica (Oxford, England)
container_volume 96
creator Wang, Kang
Jayadev, Chaitra
Nittala, Muneeswar G.
Velaga, Swetha B.
Ramachandra, Chaithanya A.
Bhaskaranand, Malavika
Bhat, Sandeep
Solanki, Kaushal
Sadda, SriniVas R.
description Purpose We examined the sensitivity and specificity of an automated algorithm for detecting referral‐warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Methods Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5‐level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral‐warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. Results The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1–93.9/80.4–89.4) with a 50.0%/53.6% specificity (95% CI 31.7–72.8/36.5–71.4) for detecting referral‐warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819–0.922/0.804–0.894). Conclusion Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral‐warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging.
doi_str_mv 10.1111/aos.13528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940598661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001909132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-b2563373376cf2c427c4079a82fee1cd9c4df45b658921f4545d3c2b023143253</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMobk4v_ANS8EYvuuWjSZvLMfwCYRcq6FVIk7fa0TazaRn790Y7dyH4Et4cyMPh5CB0TvCUhJlp56eEcZodoDFJOY9ZKrLDveavI3Ti_QpjQYRIjtGIZpIKIuUYvc37ztW6AxtZ6MB0pWsiV0S21Dl0pYnasBu31t3HNqrAh2cfBaSvulZvSgtFCZWN1h5664yrXN9GZa3fwZ-io0JXHs529wS93N48L-7jx-Xdw2L-GBuWZVmcUy4YS8MRpqAmoalJcCp1RgsAYqw0iS0SngseMpOgEm6ZoTmmjCSMcjZBV4PvunWfPfhO1aU3UFW6Add7RWSCucyEIAG9_IOuQt4mpFMUYyKxJIwG6nqgTOu8b6FQ6zZ8qd0qgtV33yr0rX76DuzFzrHPa7B78rfgAMwGYFNWsP3fSc2XT4PlF34iiZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001909132</pqid></control><display><type>article</type><title>Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Wang, Kang ; Jayadev, Chaitra ; Nittala, Muneeswar G. ; Velaga, Swetha B. ; Ramachandra, Chaithanya A. ; Bhaskaranand, Malavika ; Bhat, Sandeep ; Solanki, Kaushal ; Sadda, SriniVas R.</creator><creatorcontrib>Wang, Kang ; Jayadev, Chaitra ; Nittala, Muneeswar G. ; Velaga, Swetha B. ; Ramachandra, Chaithanya A. ; Bhaskaranand, Malavika ; Bhat, Sandeep ; Solanki, Kaushal ; Sadda, SriniVas R.</creatorcontrib><description>Purpose We examined the sensitivity and specificity of an automated algorithm for detecting referral‐warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Methods Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5‐level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral‐warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. Results The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1–93.9/80.4–89.4) with a 50.0%/53.6% specificity (95% CI 31.7–72.8/36.5–71.4) for detecting referral‐warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819–0.922/0.804–0.894). Conclusion Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral‐warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging.</description><identifier>ISSN: 1755-375X</identifier><identifier>EISSN: 1755-3768</identifier><identifier>DOI: 10.1111/aos.13528</identifier><identifier>PMID: 28926199</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adult ; Aged ; Algorithms ; Area Under Curve ; automated ; Automation ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Diabetic Retinopathy - diagnosis ; Diagnostic Techniques, Ophthalmological ; Female ; Humans ; Image detection ; Image Processing, Computer-Assisted - methods ; Lesions ; Male ; Middle Aged ; Photography - methods ; pseudocolour ; Retina ; Retinopathy ; ROC Curve ; Sensitivity ; Sensitivity and Specificity ; Software ; ultrawidefield</subject><ispartof>Acta ophthalmologica (Oxford, England), 2018-03, Vol.96 (2), p.e168-e173</ispartof><rights>2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 Acta Ophthalmologica Scandinavica Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-b2563373376cf2c427c4079a82fee1cd9c4df45b658921f4545d3c2b023143253</citedby><cites>FETCH-LOGICAL-c3888-b2563373376cf2c427c4079a82fee1cd9c4df45b658921f4545d3c2b023143253</cites><orcidid>0000-0002-3802-6594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faos.13528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faos.13528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28926199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Jayadev, Chaitra</creatorcontrib><creatorcontrib>Nittala, Muneeswar G.</creatorcontrib><creatorcontrib>Velaga, Swetha B.</creatorcontrib><creatorcontrib>Ramachandra, Chaithanya A.</creatorcontrib><creatorcontrib>Bhaskaranand, Malavika</creatorcontrib><creatorcontrib>Bhat, Sandeep</creatorcontrib><creatorcontrib>Solanki, Kaushal</creatorcontrib><creatorcontrib>Sadda, SriniVas R.</creatorcontrib><title>Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images</title><title>Acta ophthalmologica (Oxford, England)</title><addtitle>Acta Ophthalmol</addtitle><description>Purpose We examined the sensitivity and specificity of an automated algorithm for detecting referral‐warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Methods Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5‐level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral‐warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. Results The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1–93.9/80.4–89.4) with a 50.0%/53.6% specificity (95% CI 31.7–72.8/36.5–71.4) for detecting referral‐warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819–0.922/0.804–0.894). Conclusion Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral‐warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>automated</subject><subject>Automation</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - diagnosis</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Female</subject><subject>Humans</subject><subject>Image detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Photography - methods</subject><subject>pseudocolour</subject><subject>Retina</subject><subject>Retinopathy</subject><subject>ROC Curve</subject><subject>Sensitivity</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>ultrawidefield</subject><issn>1755-375X</issn><issn>1755-3768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAYhYMobk4v_ANS8EYvuuWjSZvLMfwCYRcq6FVIk7fa0TazaRn790Y7dyH4Et4cyMPh5CB0TvCUhJlp56eEcZodoDFJOY9ZKrLDveavI3Ti_QpjQYRIjtGIZpIKIuUYvc37ztW6AxtZ6MB0pWsiV0S21Dl0pYnasBu31t3HNqrAh2cfBaSvulZvSgtFCZWN1h5664yrXN9GZa3fwZ-io0JXHs529wS93N48L-7jx-Xdw2L-GBuWZVmcUy4YS8MRpqAmoalJcCp1RgsAYqw0iS0SngseMpOgEm6ZoTmmjCSMcjZBV4PvunWfPfhO1aU3UFW6Add7RWSCucyEIAG9_IOuQt4mpFMUYyKxJIwG6nqgTOu8b6FQ6zZ8qd0qgtV33yr0rX76DuzFzrHPa7B78rfgAMwGYFNWsP3fSc2XT4PlF34iiZs</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Wang, Kang</creator><creator>Jayadev, Chaitra</creator><creator>Nittala, Muneeswar G.</creator><creator>Velaga, Swetha B.</creator><creator>Ramachandra, Chaithanya A.</creator><creator>Bhaskaranand, Malavika</creator><creator>Bhat, Sandeep</creator><creator>Solanki, Kaushal</creator><creator>Sadda, SriniVas R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3802-6594</orcidid></search><sort><creationdate>201803</creationdate><title>Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images</title><author>Wang, Kang ; Jayadev, Chaitra ; Nittala, Muneeswar G. ; Velaga, Swetha B. ; Ramachandra, Chaithanya A. ; Bhaskaranand, Malavika ; Bhat, Sandeep ; Solanki, Kaushal ; Sadda, SriniVas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-b2563373376cf2c427c4079a82fee1cd9c4df45b658921f4545d3c2b023143253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>automated</topic><topic>Automation</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - diagnosis</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Female</topic><topic>Humans</topic><topic>Image detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Photography - methods</topic><topic>pseudocolour</topic><topic>Retina</topic><topic>Retinopathy</topic><topic>ROC Curve</topic><topic>Sensitivity</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>ultrawidefield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Jayadev, Chaitra</creatorcontrib><creatorcontrib>Nittala, Muneeswar G.</creatorcontrib><creatorcontrib>Velaga, Swetha B.</creatorcontrib><creatorcontrib>Ramachandra, Chaithanya A.</creatorcontrib><creatorcontrib>Bhaskaranand, Malavika</creatorcontrib><creatorcontrib>Bhat, Sandeep</creatorcontrib><creatorcontrib>Solanki, Kaushal</creatorcontrib><creatorcontrib>Sadda, SriniVas R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta ophthalmologica (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kang</au><au>Jayadev, Chaitra</au><au>Nittala, Muneeswar G.</au><au>Velaga, Swetha B.</au><au>Ramachandra, Chaithanya A.</au><au>Bhaskaranand, Malavika</au><au>Bhat, Sandeep</au><au>Solanki, Kaushal</au><au>Sadda, SriniVas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images</atitle><jtitle>Acta ophthalmologica (Oxford, England)</jtitle><addtitle>Acta Ophthalmol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>96</volume><issue>2</issue><spage>e168</spage><epage>e173</epage><pages>e168-e173</pages><issn>1755-375X</issn><eissn>1755-3768</eissn><abstract>Purpose We examined the sensitivity and specificity of an automated algorithm for detecting referral‐warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Methods Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5‐level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral‐warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. Results The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1–93.9/80.4–89.4) with a 50.0%/53.6% specificity (95% CI 31.7–72.8/36.5–71.4) for detecting referral‐warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819–0.922/0.804–0.894). Conclusion Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral‐warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28926199</pmid><doi>10.1111/aos.13528</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3802-6594</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-375X
ispartof Acta ophthalmologica (Oxford, England), 2018-03, Vol.96 (2), p.e168-e173
issn 1755-375X
1755-3768
language eng
recordid cdi_proquest_miscellaneous_1940598661
source MEDLINE; Wiley Free Content; Wiley Online Library All Journals
subjects Adult
Aged
Algorithms
Area Under Curve
automated
Automation
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diabetic Retinopathy - diagnosis
Diagnostic Techniques, Ophthalmological
Female
Humans
Image detection
Image Processing, Computer-Assisted - methods
Lesions
Male
Middle Aged
Photography - methods
pseudocolour
Retina
Retinopathy
ROC Curve
Sensitivity
Sensitivity and Specificity
Software
ultrawidefield
title Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20diabetic%20retinopathy%20lesions%20on%20ultrawidefield%20pseudocolour%20images&rft.jtitle=Acta%20ophthalmologica%20(Oxford,%20England)&rft.au=Wang,%20Kang&rft.date=2018-03&rft.volume=96&rft.issue=2&rft.spage=e168&rft.epage=e173&rft.pages=e168-e173&rft.issn=1755-375X&rft.eissn=1755-3768&rft_id=info:doi/10.1111/aos.13528&rft_dat=%3Cproquest_cross%3E2001909132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001909132&rft_id=info:pmid/28926199&rfr_iscdi=true