The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study
This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2017-12, Vol.38 (31), p.2680-2692 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2692 |
---|---|
container_issue | 31 |
container_start_page | 2680 |
container_title | Journal of computational chemistry |
container_volume | 38 |
creator | Šebesta, Filip Brela, Mateusz Z Diaz, Silvia Miranda, Sebastian Murray, Jane S Gutiérrez‐Oliva, Soledad Toro‐Labbé, Alejandro Michalak, Artur Burda, Jaroslav V |
description | This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
Intramolecular proton transfer (PT) process on thymine nucleobase between N3 and O2 atoms is explored in presence of hexacoordinated divalent metals cations Mg2+, Zn2+, and Hg2+. This PT proceeds as a two stages process. The first step involves the PT from one of the aqua ligands toward O2. The second stage is connected with the N3‐proton ion. In the presence of the hexaaqua‐cations, the activation barrier is at most 8 kcal/mol. |
doi_str_mv | 10.1002/jcc.24911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940598200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940598200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-ea19839cff0313ef549abc1780335c052e89ea07aa383f953b91f4c639286afc3</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh0VIababHvICRZBLe3CikSxbyq0sTf8QGgIp9Ga02hHrxZYTSab4BfoCzRP2Saqskx4KBYGY4eObYX6EnAA7A8b4-c7aM15qgAOyAKarQqv6-yFZMNC8UJWEI_Iqxh1jTMiqfEmOuNJcMgYL8ut2i7T1rhvRW6SDoyk3ekymo9akdvCRGr-hfWvDsJ02Yd-j-T1yAY3d1ymYHdo0hOlZ8VXQ3z8f6DXP1dS3HuldGNKM-ugwXNCb0fg09nma3Rrf2jwypnEzHZMXznQRXz_9S_Lt8sPt6lNxdf3x8-r9VWFL0FCgAa2Ets4xAQKdLLVZW6gVE0JaJjkqjYbVxgglnJZircGVthKaq8o4K5bk7ezNm92PGFPTt9Fi1xmPwxgb0CWTWvF8tiU5_QfdDWPwebtMybJWuoYqU-9mKt8qxoCuuQttb8LUAGsek2pyUs0-qcy-eTKO6x43f8nnaDJwPgM_2g6n_5uaL6vVrPwD2Neeog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954789716</pqid></control><display><type>article</type><title>The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study</title><source>Wiley Journals</source><creator>Šebesta, Filip ; Brela, Mateusz Z ; Diaz, Silvia ; Miranda, Sebastian ; Murray, Jane S ; Gutiérrez‐Oliva, Soledad ; Toro‐Labbé, Alejandro ; Michalak, Artur ; Burda, Jaroslav V</creator><creatorcontrib>Šebesta, Filip ; Brela, Mateusz Z ; Diaz, Silvia ; Miranda, Sebastian ; Murray, Jane S ; Gutiérrez‐Oliva, Soledad ; Toro‐Labbé, Alejandro ; Michalak, Artur ; Burda, Jaroslav V</creatorcontrib><description>This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
Intramolecular proton transfer (PT) process on thymine nucleobase between N3 and O2 atoms is explored in presence of hexacoordinated divalent metals cations Mg2+, Zn2+, and Hg2+. This PT proceeds as a two stages process. The first step involves the PT from one of the aqua ligands toward O2. The second stage is connected with the N3‐proton ion. In the presence of the hexaaqua‐cations, the activation barrier is at most 8 kcal/mol.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24911</identifier><identifier>PMID: 28925001</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Cations ; chemical potential ; Computational chemistry ; DFT ; Ions ; Ligands ; Mercury (metal) ; Metals ; Molecular chemistry ; Nuclei ; proton transfer ; Protons ; Quantum mechanics ; reaction coordinate ; Thymine</subject><ispartof>Journal of computational chemistry, 2017-12, Vol.38 (31), p.2680-2692</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4191-ea19839cff0313ef549abc1780335c052e89ea07aa383f953b91f4c639286afc3</citedby><cites>FETCH-LOGICAL-c4191-ea19839cff0313ef549abc1780335c052e89ea07aa383f953b91f4c639286afc3</cites><orcidid>0000-0003-1408-5474 ; 0000-0001-9909-8797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1417,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28925001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Šebesta, Filip</creatorcontrib><creatorcontrib>Brela, Mateusz Z</creatorcontrib><creatorcontrib>Diaz, Silvia</creatorcontrib><creatorcontrib>Miranda, Sebastian</creatorcontrib><creatorcontrib>Murray, Jane S</creatorcontrib><creatorcontrib>Gutiérrez‐Oliva, Soledad</creatorcontrib><creatorcontrib>Toro‐Labbé, Alejandro</creatorcontrib><creatorcontrib>Michalak, Artur</creatorcontrib><creatorcontrib>Burda, Jaroslav V</creatorcontrib><title>The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
Intramolecular proton transfer (PT) process on thymine nucleobase between N3 and O2 atoms is explored in presence of hexacoordinated divalent metals cations Mg2+, Zn2+, and Hg2+. This PT proceeds as a two stages process. The first step involves the PT from one of the aqua ligands toward O2. The second stage is connected with the N3‐proton ion. In the presence of the hexaaqua‐cations, the activation barrier is at most 8 kcal/mol.</description><subject>Cations</subject><subject>chemical potential</subject><subject>Computational chemistry</subject><subject>DFT</subject><subject>Ions</subject><subject>Ligands</subject><subject>Mercury (metal)</subject><subject>Metals</subject><subject>Molecular chemistry</subject><subject>Nuclei</subject><subject>proton transfer</subject><subject>Protons</subject><subject>Quantum mechanics</subject><subject>reaction coordinate</subject><subject>Thymine</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9q3DAQh0VIababHvICRZBLe3CikSxbyq0sTf8QGgIp9Ga02hHrxZYTSab4BfoCzRP2Saqskx4KBYGY4eObYX6EnAA7A8b4-c7aM15qgAOyAKarQqv6-yFZMNC8UJWEI_Iqxh1jTMiqfEmOuNJcMgYL8ut2i7T1rhvRW6SDoyk3ekymo9akdvCRGr-hfWvDsJ02Yd-j-T1yAY3d1ymYHdo0hOlZ8VXQ3z8f6DXP1dS3HuldGNKM-ugwXNCb0fg09nma3Rrf2jwypnEzHZMXznQRXz_9S_Lt8sPt6lNxdf3x8-r9VWFL0FCgAa2Ets4xAQKdLLVZW6gVE0JaJjkqjYbVxgglnJZircGVthKaq8o4K5bk7ezNm92PGFPTt9Fi1xmPwxgb0CWTWvF8tiU5_QfdDWPwebtMybJWuoYqU-9mKt8qxoCuuQttb8LUAGsek2pyUs0-qcy-eTKO6x43f8nnaDJwPgM_2g6n_5uaL6vVrPwD2Neeog</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Šebesta, Filip</creator><creator>Brela, Mateusz Z</creator><creator>Diaz, Silvia</creator><creator>Miranda, Sebastian</creator><creator>Murray, Jane S</creator><creator>Gutiérrez‐Oliva, Soledad</creator><creator>Toro‐Labbé, Alejandro</creator><creator>Michalak, Artur</creator><creator>Burda, Jaroslav V</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1408-5474</orcidid><orcidid>https://orcid.org/0000-0001-9909-8797</orcidid></search><sort><creationdate>20171205</creationdate><title>The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study</title><author>Šebesta, Filip ; Brela, Mateusz Z ; Diaz, Silvia ; Miranda, Sebastian ; Murray, Jane S ; Gutiérrez‐Oliva, Soledad ; Toro‐Labbé, Alejandro ; Michalak, Artur ; Burda, Jaroslav V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-ea19839cff0313ef549abc1780335c052e89ea07aa383f953b91f4c639286afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cations</topic><topic>chemical potential</topic><topic>Computational chemistry</topic><topic>DFT</topic><topic>Ions</topic><topic>Ligands</topic><topic>Mercury (metal)</topic><topic>Metals</topic><topic>Molecular chemistry</topic><topic>Nuclei</topic><topic>proton transfer</topic><topic>Protons</topic><topic>Quantum mechanics</topic><topic>reaction coordinate</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šebesta, Filip</creatorcontrib><creatorcontrib>Brela, Mateusz Z</creatorcontrib><creatorcontrib>Diaz, Silvia</creatorcontrib><creatorcontrib>Miranda, Sebastian</creatorcontrib><creatorcontrib>Murray, Jane S</creatorcontrib><creatorcontrib>Gutiérrez‐Oliva, Soledad</creatorcontrib><creatorcontrib>Toro‐Labbé, Alejandro</creatorcontrib><creatorcontrib>Michalak, Artur</creatorcontrib><creatorcontrib>Burda, Jaroslav V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šebesta, Filip</au><au>Brela, Mateusz Z</au><au>Diaz, Silvia</au><au>Miranda, Sebastian</au><au>Murray, Jane S</au><au>Gutiérrez‐Oliva, Soledad</au><au>Toro‐Labbé, Alejandro</au><au>Michalak, Artur</au><au>Burda, Jaroslav V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2017-12-05</date><risdate>2017</risdate><volume>38</volume><issue>31</issue><spage>2680</spage><epage>2692</epage><pages>2680-2692</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
Intramolecular proton transfer (PT) process on thymine nucleobase between N3 and O2 atoms is explored in presence of hexacoordinated divalent metals cations Mg2+, Zn2+, and Hg2+. This PT proceeds as a two stages process. The first step involves the PT from one of the aqua ligands toward O2. The second stage is connected with the N3‐proton ion. In the presence of the hexaaqua‐cations, the activation barrier is at most 8 kcal/mol.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28925001</pmid><doi>10.1002/jcc.24911</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1408-5474</orcidid><orcidid>https://orcid.org/0000-0001-9909-8797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2017-12, Vol.38 (31), p.2680-2692 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_1940598200 |
source | Wiley Journals |
subjects | Cations chemical potential Computational chemistry DFT Ions Ligands Mercury (metal) Metals Molecular chemistry Nuclei proton transfer Protons Quantum mechanics reaction coordinate Thymine |
title | The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20the%20metal%20cations%20and%20microhydration%20on%20the%20reaction%20trajectory%20of%20the%20N3%20%E2%86%94%20O2%20thymine%20proton%20transfer:%20Quantum%20mechanical%20study&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=%C5%A0ebesta,%20Filip&rft.date=2017-12-05&rft.volume=38&rft.issue=31&rft.spage=2680&rft.epage=2692&rft.pages=2680-2692&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.24911&rft_dat=%3Cproquest_cross%3E1940598200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954789716&rft_id=info:pmid/28925001&rfr_iscdi=true |