Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model

Sanguinarine, a benzophenanthridine alkaloid, has been previously demonstrated to exert antimicrobial, anti‐inflammatory, and anti‐tumor activities. A previous study has identified Sanguinarine as a potential drug candidate for osteoporosis treatment by computational bioinformatics analysis. This st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2018-06, Vol.233 (6), p.4626-4633
Hauptverfasser: Zhang, Fuzhan, Xie, Jile, Wang, Genlin, Zhang, Ge, Yang, Huilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4633
container_issue 6
container_start_page 4626
container_title Journal of cellular physiology
container_volume 233
creator Zhang, Fuzhan
Xie, Jile
Wang, Genlin
Zhang, Ge
Yang, Huilin
description Sanguinarine, a benzophenanthridine alkaloid, has been previously demonstrated to exert antimicrobial, anti‐inflammatory, and anti‐tumor activities. A previous study has identified Sanguinarine as a potential drug candidate for osteoporosis treatment by computational bioinformatics analysis. This study further evaluated the effects of Sanguinarine on the differentiation of murine preosteoblast MC3T3‐E1 cells and its anti‐osteoporosis activity in an ovarietomized rat model. Sanguinarine treatment (0.25, 0.5, 1, and 2 µm) of MC3T3‐E1 cells significantly increased alkaline phosphatase (ALP) activity and the phoshporalyation of AMP‐activated protein kinase α subunit (AMPKα), but did not affect cell proliferation. The induction effects of Sanguinarine treatment (2 µm) on ALP activity, AMPKα phosphorylation, Smad1 phosphorylation, and the expression of three osteoblast differentiation‐regulators (bone morphogenetic protein 2 [BMP2], osterix [OSX], and osteoprotegerin [OPG]) were partially reversed by Compound C treatment. More importantly, Sanguinarine treatment promoted bone tissue growth in an ovariectomized (OVX) osteoporosis rat model as evaluated by histological examination, micro‐CT analysis, and serum parameter detection. In conclusion, these results indicate that Sanguinarine induces the differentiation of MC3T3‐E1 cells through the activation of the AMPK/Smad1 signaling pathway. Sanguinarine can stimulate bone growth in vivo and may be an effective drug for osteoporosis treatment. Sanguinarine induces MC3T3‐E1 cell differentiation through the AMPK/Smad1 signaling pathway. Sanguinarine treatment promoted bone tissue growth in a rat model.
doi_str_mv 10.1002/jcp.26187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940597742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008287504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-dacd9c46dd73ffa1f22edac569cdfb5bc4db220019f9d25bf7c7c26f6a8193c03</originalsourceid><addsrcrecordid>eNp1kc1O3DAUha0K1BmmXfAClSU2ZRHwTxLHy9GIUhAIpNK15fgHeZTYwU6opiseoc_YJ6mHgS6QWFhX9v3O8dU9ABxidIIRIqdrNZyQGjfsA5hjxFlR1hXZA_PcwwWvSjwDBymtEUKcU_oRzEjDSZ0vc-CXfnR_n_6ENJowhBiSS1Cq0T26cQODhT-kv5-cl9F5A52HQzTPbNvJNMLrFb2jWX6GoTJdl6Ve5wPDYxYYNYbe_TYaRjnCPmjTfQL7VnbJfH6pC_Dz29nd6ntxdXN-sVpeFYpWlBVaKs1VWWvNqLUSW0JMfqtqrrRtq1aVuiUEIcwt16RqLVNMkdrWssGcKkQX4OvOd4jhYTJpFL1L2wmlN2FKAvMSVZyxkmT06A26DlP0eTqRf2hIwypUZup4R6m8ohSNFUN0vYwbgZHYhiByCOI5hMx-eXGc2t7o_-Tr1jNwugN-uc5s3ncSl6vbneU_HjmUDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008287504</pqid></control><display><type>article</type><title>Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Zhang, Fuzhan ; Xie, Jile ; Wang, Genlin ; Zhang, Ge ; Yang, Huilin</creator><creatorcontrib>Zhang, Fuzhan ; Xie, Jile ; Wang, Genlin ; Zhang, Ge ; Yang, Huilin</creatorcontrib><description>Sanguinarine, a benzophenanthridine alkaloid, has been previously demonstrated to exert antimicrobial, anti‐inflammatory, and anti‐tumor activities. A previous study has identified Sanguinarine as a potential drug candidate for osteoporosis treatment by computational bioinformatics analysis. This study further evaluated the effects of Sanguinarine on the differentiation of murine preosteoblast MC3T3‐E1 cells and its anti‐osteoporosis activity in an ovarietomized rat model. Sanguinarine treatment (0.25, 0.5, 1, and 2 µm) of MC3T3‐E1 cells significantly increased alkaline phosphatase (ALP) activity and the phoshporalyation of AMP‐activated protein kinase α subunit (AMPKα), but did not affect cell proliferation. The induction effects of Sanguinarine treatment (2 µm) on ALP activity, AMPKα phosphorylation, Smad1 phosphorylation, and the expression of three osteoblast differentiation‐regulators (bone morphogenetic protein 2 [BMP2], osterix [OSX], and osteoprotegerin [OPG]) were partially reversed by Compound C treatment. More importantly, Sanguinarine treatment promoted bone tissue growth in an ovariectomized (OVX) osteoporosis rat model as evaluated by histological examination, micro‐CT analysis, and serum parameter detection. In conclusion, these results indicate that Sanguinarine induces the differentiation of MC3T3‐E1 cells through the activation of the AMPK/Smad1 signaling pathway. Sanguinarine can stimulate bone growth in vivo and may be an effective drug for osteoporosis treatment. Sanguinarine induces MC3T3‐E1 cell differentiation through the AMPK/Smad1 signaling pathway. Sanguinarine treatment promoted bone tissue growth in a rat model.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.26187</identifier><identifier>PMID: 28926099</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3T3 Cells ; Alkaline phosphatase ; AMP ; AMP-Activated Protein Kinases - metabolism ; AMPKα ; Animals ; Benzophenanthridines - pharmacology ; Biocompatibility ; Bioinformatics ; Biomedical materials ; Bone Density - drug effects ; Bone Density Conservation Agents - pharmacology ; Bone growth ; Bone morphogenetic protein 2 ; Bone Remodeling - drug effects ; Cell Differentiation - drug effects ; Cell proliferation ; Computer applications ; Differentiation ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Female ; Humans ; Inflammation ; Isoquinolines - pharmacology ; Kinases ; Mice ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Osteogenesis - drug effects ; Osteoporosis ; Osteoporosis, Postmenopausal - drug therapy ; Osteoporosis, Postmenopausal - metabolism ; Osteoporosis, Postmenopausal - pathology ; Osteoporosis, Postmenopausal - physiopathology ; osteoportosis ; Osteoprotegerin ; Ovariectomy ; Phosphorylation ; Protein kinase ; Rats, Sprague-Dawley ; Regulators ; Rodents ; Sanguinarine ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; Smad1 Protein - metabolism</subject><ispartof>Journal of cellular physiology, 2018-06, Vol.233 (6), p.4626-4633</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-dacd9c46dd73ffa1f22edac569cdfb5bc4db220019f9d25bf7c7c26f6a8193c03</citedby><cites>FETCH-LOGICAL-c3537-dacd9c46dd73ffa1f22edac569cdfb5bc4db220019f9d25bf7c7c26f6a8193c03</cites><orcidid>0000-0003-0482-0164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.26187$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.26187$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28926099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Fuzhan</creatorcontrib><creatorcontrib>Xie, Jile</creatorcontrib><creatorcontrib>Wang, Genlin</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Yang, Huilin</creatorcontrib><title>Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Sanguinarine, a benzophenanthridine alkaloid, has been previously demonstrated to exert antimicrobial, anti‐inflammatory, and anti‐tumor activities. A previous study has identified Sanguinarine as a potential drug candidate for osteoporosis treatment by computational bioinformatics analysis. This study further evaluated the effects of Sanguinarine on the differentiation of murine preosteoblast MC3T3‐E1 cells and its anti‐osteoporosis activity in an ovarietomized rat model. Sanguinarine treatment (0.25, 0.5, 1, and 2 µm) of MC3T3‐E1 cells significantly increased alkaline phosphatase (ALP) activity and the phoshporalyation of AMP‐activated protein kinase α subunit (AMPKα), but did not affect cell proliferation. The induction effects of Sanguinarine treatment (2 µm) on ALP activity, AMPKα phosphorylation, Smad1 phosphorylation, and the expression of three osteoblast differentiation‐regulators (bone morphogenetic protein 2 [BMP2], osterix [OSX], and osteoprotegerin [OPG]) were partially reversed by Compound C treatment. More importantly, Sanguinarine treatment promoted bone tissue growth in an ovariectomized (OVX) osteoporosis rat model as evaluated by histological examination, micro‐CT analysis, and serum parameter detection. In conclusion, these results indicate that Sanguinarine induces the differentiation of MC3T3‐E1 cells through the activation of the AMPK/Smad1 signaling pathway. Sanguinarine can stimulate bone growth in vivo and may be an effective drug for osteoporosis treatment. Sanguinarine induces MC3T3‐E1 cell differentiation through the AMPK/Smad1 signaling pathway. Sanguinarine treatment promoted bone tissue growth in a rat model.</description><subject>3T3 Cells</subject><subject>Alkaline phosphatase</subject><subject>AMP</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPKα</subject><subject>Animals</subject><subject>Benzophenanthridines - pharmacology</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biomedical materials</subject><subject>Bone Density - drug effects</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Bone growth</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone Remodeling - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell proliferation</subject><subject>Computer applications</subject><subject>Differentiation</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Isoquinolines - pharmacology</subject><subject>Kinases</subject><subject>Mice</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Osteoporosis, Postmenopausal - drug therapy</subject><subject>Osteoporosis, Postmenopausal - metabolism</subject><subject>Osteoporosis, Postmenopausal - pathology</subject><subject>Osteoporosis, Postmenopausal - physiopathology</subject><subject>osteoportosis</subject><subject>Osteoprotegerin</subject><subject>Ovariectomy</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Rats, Sprague-Dawley</subject><subject>Regulators</subject><subject>Rodents</subject><subject>Sanguinarine</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Smad1 Protein - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O3DAUha0K1BmmXfAClSU2ZRHwTxLHy9GIUhAIpNK15fgHeZTYwU6opiseoc_YJ6mHgS6QWFhX9v3O8dU9ABxidIIRIqdrNZyQGjfsA5hjxFlR1hXZA_PcwwWvSjwDBymtEUKcU_oRzEjDSZ0vc-CXfnR_n_6ENJowhBiSS1Cq0T26cQODhT-kv5-cl9F5A52HQzTPbNvJNMLrFb2jWX6GoTJdl6Ve5wPDYxYYNYbe_TYaRjnCPmjTfQL7VnbJfH6pC_Dz29nd6ntxdXN-sVpeFYpWlBVaKs1VWWvNqLUSW0JMfqtqrrRtq1aVuiUEIcwt16RqLVNMkdrWssGcKkQX4OvOd4jhYTJpFL1L2wmlN2FKAvMSVZyxkmT06A26DlP0eTqRf2hIwypUZup4R6m8ohSNFUN0vYwbgZHYhiByCOI5hMx-eXGc2t7o_-Tr1jNwugN-uc5s3ncSl6vbneU_HjmUDQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Zhang, Fuzhan</creator><creator>Xie, Jile</creator><creator>Wang, Genlin</creator><creator>Zhang, Ge</creator><creator>Yang, Huilin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0482-0164</orcidid></search><sort><creationdate>201806</creationdate><title>Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model</title><author>Zhang, Fuzhan ; Xie, Jile ; Wang, Genlin ; Zhang, Ge ; Yang, Huilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-dacd9c46dd73ffa1f22edac569cdfb5bc4db220019f9d25bf7c7c26f6a8193c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3T3 Cells</topic><topic>Alkaline phosphatase</topic><topic>AMP</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPKα</topic><topic>Animals</topic><topic>Benzophenanthridines - pharmacology</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biomedical materials</topic><topic>Bone Density - drug effects</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Bone growth</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone Remodeling - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell proliferation</topic><topic>Computer applications</topic><topic>Differentiation</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Isoquinolines - pharmacology</topic><topic>Kinases</topic><topic>Mice</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Osteoporosis, Postmenopausal - drug therapy</topic><topic>Osteoporosis, Postmenopausal - metabolism</topic><topic>Osteoporosis, Postmenopausal - pathology</topic><topic>Osteoporosis, Postmenopausal - physiopathology</topic><topic>osteoportosis</topic><topic>Osteoprotegerin</topic><topic>Ovariectomy</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Rats, Sprague-Dawley</topic><topic>Regulators</topic><topic>Rodents</topic><topic>Sanguinarine</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Smad1 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fuzhan</creatorcontrib><creatorcontrib>Xie, Jile</creatorcontrib><creatorcontrib>Wang, Genlin</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Yang, Huilin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fuzhan</au><au>Xie, Jile</au><au>Wang, Genlin</au><au>Zhang, Ge</au><au>Yang, Huilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2018-06</date><risdate>2018</risdate><volume>233</volume><issue>6</issue><spage>4626</spage><epage>4633</epage><pages>4626-4633</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Sanguinarine, a benzophenanthridine alkaloid, has been previously demonstrated to exert antimicrobial, anti‐inflammatory, and anti‐tumor activities. A previous study has identified Sanguinarine as a potential drug candidate for osteoporosis treatment by computational bioinformatics analysis. This study further evaluated the effects of Sanguinarine on the differentiation of murine preosteoblast MC3T3‐E1 cells and its anti‐osteoporosis activity in an ovarietomized rat model. Sanguinarine treatment (0.25, 0.5, 1, and 2 µm) of MC3T3‐E1 cells significantly increased alkaline phosphatase (ALP) activity and the phoshporalyation of AMP‐activated protein kinase α subunit (AMPKα), but did not affect cell proliferation. The induction effects of Sanguinarine treatment (2 µm) on ALP activity, AMPKα phosphorylation, Smad1 phosphorylation, and the expression of three osteoblast differentiation‐regulators (bone morphogenetic protein 2 [BMP2], osterix [OSX], and osteoprotegerin [OPG]) were partially reversed by Compound C treatment. More importantly, Sanguinarine treatment promoted bone tissue growth in an ovariectomized (OVX) osteoporosis rat model as evaluated by histological examination, micro‐CT analysis, and serum parameter detection. In conclusion, these results indicate that Sanguinarine induces the differentiation of MC3T3‐E1 cells through the activation of the AMPK/Smad1 signaling pathway. Sanguinarine can stimulate bone growth in vivo and may be an effective drug for osteoporosis treatment. Sanguinarine induces MC3T3‐E1 cell differentiation through the AMPK/Smad1 signaling pathway. Sanguinarine treatment promoted bone tissue growth in a rat model.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28926099</pmid><doi>10.1002/jcp.26187</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0482-0164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2018-06, Vol.233 (6), p.4626-4633
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_1940597742
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects 3T3 Cells
Alkaline phosphatase
AMP
AMP-Activated Protein Kinases - metabolism
AMPKα
Animals
Benzophenanthridines - pharmacology
Biocompatibility
Bioinformatics
Biomedical materials
Bone Density - drug effects
Bone Density Conservation Agents - pharmacology
Bone growth
Bone morphogenetic protein 2
Bone Remodeling - drug effects
Cell Differentiation - drug effects
Cell proliferation
Computer applications
Differentiation
Disease Models, Animal
Dose-Response Relationship, Drug
Female
Humans
Inflammation
Isoquinolines - pharmacology
Kinases
Mice
Osteoblastogenesis
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteoblasts - pathology
Osteogenesis - drug effects
Osteoporosis
Osteoporosis, Postmenopausal - drug therapy
Osteoporosis, Postmenopausal - metabolism
Osteoporosis, Postmenopausal - pathology
Osteoporosis, Postmenopausal - physiopathology
osteoportosis
Osteoprotegerin
Ovariectomy
Phosphorylation
Protein kinase
Rats, Sprague-Dawley
Regulators
Rodents
Sanguinarine
Signal transduction
Signal Transduction - drug effects
Signaling
Smad1 Protein - metabolism
title Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti%E2%80%90osteoporosis%20activity%20of%20Sanguinarine%20in%20preosteoblast%20MC3T3%E2%80%90E1%20cells%20and%20an%20ovariectomized%20rat%20model&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Zhang,%20Fuzhan&rft.date=2018-06&rft.volume=233&rft.issue=6&rft.spage=4626&rft.epage=4633&rft.pages=4626-4633&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.26187&rft_dat=%3Cproquest_cross%3E2008287504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008287504&rft_id=info:pmid/28926099&rfr_iscdi=true