Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution

A novel mesoporous nanosheet networked hybrid comprising Co3O4 and Co3(PO4)2 is successfully synthesized using a facile and scalable method through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Electron transfer from Co3O4 to Co3(PO4)2, together with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-11, Vol.13 (43), p.n/a
Hauptverfasser: Liu, Bin, Peng, Hui‐Qing, Ho, Cheuk‐Nam, Xue, Hongtao, Wu, Shuilin, Ng, Tsz‐Wai, Lee, Chun‐Sing, Zhang, Wenjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 13
creator Liu, Bin
Peng, Hui‐Qing
Ho, Cheuk‐Nam
Xue, Hongtao
Wu, Shuilin
Ng, Tsz‐Wai
Lee, Chun‐Sing
Zhang, Wenjun
description A novel mesoporous nanosheet networked hybrid comprising Co3O4 and Co3(PO4)2 is successfully synthesized using a facile and scalable method through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Electron transfer from Co3O4 to Co3(PO4)2, together with the special networked structure and the porous nature of the nanosheets enable the Co3(PO4)2‐Co3O4 hybrid to have a high oxygen evolution reaction (OER) activity and outstanding stability in alkaline electrolyte, e.g., an overpotential of 270 mV at current density of 10 mA cm−2, and a Tafel slope of 39 mV dec−1, which are superior to most non‐noble metal‐based OER electrocatalysts reported thus far and as well the commercial RuO2 electrocatalyst. Furthermore, Co3(PO4)2‐Co3O4 hybrid is demonstrated to be used as an efficient cocatalyst to enhance the photoelectrochemical OER performance of BiVO4 photoanode. A significantly increased photocurrent density of 3.0 mA cm−2 at 1.23 V (vs reversible hydrogen electrode, RHE), and a potential reduction of 530 mV with respect to that of bare BiVO4 at the photocurrent density of 0.5 mA cm−2 are achieved. The electron transfer‐induced enhancement of OER by a hybrid structure may pave the new routes for the design and synthesis of low‐cost catalysts for electrochemical and photoelectrochemical oxygen evolution. A novel networked mesoporous nanosheet hybrid composed of Co3O4 and Co3(PO4)2 is synthesized through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Beneficial from the collective effects of special morphological design and the synergistic enhancement effect between ingredients, the Co3(PO4)2‐Co3O4 nanocomposite exhibits very high activities and excellent stabilities for the electrochemical and photoelectrochemical oxygen evolution reaction.
doi_str_mv 10.1002/smll.201701875
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940594094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940594094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-b3e7e12203a5d7be86370ad888dfd292fb2a644a8d3b613388c5e1ec1052ef33</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhq0K1JbClSOyxIVLgj_Wu94jigJFSptK7X3ltcfExbsOtrdtfgd_GJe0QeqFw2hGM8-8Gs2L0HtK5pQQ9jkN3s8ZoQ2hshFH6JTWlM9qydpXh5qSE_QmpVtCOGVVc4xOmGwZE4Kcot8XkMI2xDAlfKnGkDYAGV9Cvg_xJxh8vuujMwkHixehVz7j9YMzgNVonhtXm5C2G5UB2xDx0lqnHYwZLz3oHIPewOC08n9XCpsDvBisH3Y_YMTLu-Cn7ML4Fr22yid495TP0M3X5c3ifLZaf_u--LKa6aqpxazn0ABljHAlTNODrHlDlJFSGmtYy2zPVF1VShrel0dwKbUACpoSwcByfoY-7WW3MfyaIOVucEmD92qE8o6OthURJdqqoB9foLdhimM5rlA1F7SWjSzUfE_pGFKKYLttdIOKu46S7tGt7tGt7uBWWfjwJDv1A5gD_mxPAdo9cO887P4j111frFb_xP8Aubij6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963516878</pqid></control><display><type>article</type><title>Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Bin ; Peng, Hui‐Qing ; Ho, Cheuk‐Nam ; Xue, Hongtao ; Wu, Shuilin ; Ng, Tsz‐Wai ; Lee, Chun‐Sing ; Zhang, Wenjun</creator><creatorcontrib>Liu, Bin ; Peng, Hui‐Qing ; Ho, Cheuk‐Nam ; Xue, Hongtao ; Wu, Shuilin ; Ng, Tsz‐Wai ; Lee, Chun‐Sing ; Zhang, Wenjun</creatorcontrib><description>A novel mesoporous nanosheet networked hybrid comprising Co3O4 and Co3(PO4)2 is successfully synthesized using a facile and scalable method through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Electron transfer from Co3O4 to Co3(PO4)2, together with the special networked structure and the porous nature of the nanosheets enable the Co3(PO4)2‐Co3O4 hybrid to have a high oxygen evolution reaction (OER) activity and outstanding stability in alkaline electrolyte, e.g., an overpotential of 270 mV at current density of 10 mA cm−2, and a Tafel slope of 39 mV dec−1, which are superior to most non‐noble metal‐based OER electrocatalysts reported thus far and as well the commercial RuO2 electrocatalyst. Furthermore, Co3(PO4)2‐Co3O4 hybrid is demonstrated to be used as an efficient cocatalyst to enhance the photoelectrochemical OER performance of BiVO4 photoanode. A significantly increased photocurrent density of 3.0 mA cm−2 at 1.23 V (vs reversible hydrogen electrode, RHE), and a potential reduction of 530 mV with respect to that of bare BiVO4 at the photocurrent density of 0.5 mA cm−2 are achieved. The electron transfer‐induced enhancement of OER by a hybrid structure may pave the new routes for the design and synthesis of low‐cost catalysts for electrochemical and photoelectrochemical oxygen evolution. A novel networked mesoporous nanosheet hybrid composed of Co3O4 and Co3(PO4)2 is synthesized through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Beneficial from the collective effects of special morphological design and the synergistic enhancement effect between ingredients, the Co3(PO4)2‐Co3O4 nanocomposite exhibits very high activities and excellent stabilities for the electrochemical and photoelectrochemical oxygen evolution reaction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201701875</identifier><identifier>PMID: 28922550</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Cobalt ; Cobalt oxides ; Computer networks ; Density ; electrocatalysis ; Electrocatalysts ; Electron transfer ; electron transfer induced enhancement ; Evolutionary design method ; hybrid structure ; Nanosheets ; Nanotechnology ; oxygen evolution ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; photoelectrocatalysis ; Ruthenium oxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2017-11, Vol.13 (43), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-b3e7e12203a5d7be86370ad888dfd292fb2a644a8d3b613388c5e1ec1052ef33</citedby><cites>FETCH-LOGICAL-c4765-b3e7e12203a5d7be86370ad888dfd292fb2a644a8d3b613388c5e1ec1052ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201701875$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201701875$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28922550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Peng, Hui‐Qing</creatorcontrib><creatorcontrib>Ho, Cheuk‐Nam</creatorcontrib><creatorcontrib>Xue, Hongtao</creatorcontrib><creatorcontrib>Wu, Shuilin</creatorcontrib><creatorcontrib>Ng, Tsz‐Wai</creatorcontrib><creatorcontrib>Lee, Chun‐Sing</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><title>Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A novel mesoporous nanosheet networked hybrid comprising Co3O4 and Co3(PO4)2 is successfully synthesized using a facile and scalable method through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Electron transfer from Co3O4 to Co3(PO4)2, together with the special networked structure and the porous nature of the nanosheets enable the Co3(PO4)2‐Co3O4 hybrid to have a high oxygen evolution reaction (OER) activity and outstanding stability in alkaline electrolyte, e.g., an overpotential of 270 mV at current density of 10 mA cm−2, and a Tafel slope of 39 mV dec−1, which are superior to most non‐noble metal‐based OER electrocatalysts reported thus far and as well the commercial RuO2 electrocatalyst. Furthermore, Co3(PO4)2‐Co3O4 hybrid is demonstrated to be used as an efficient cocatalyst to enhance the photoelectrochemical OER performance of BiVO4 photoanode. A significantly increased photocurrent density of 3.0 mA cm−2 at 1.23 V (vs reversible hydrogen electrode, RHE), and a potential reduction of 530 mV with respect to that of bare BiVO4 at the photocurrent density of 0.5 mA cm−2 are achieved. The electron transfer‐induced enhancement of OER by a hybrid structure may pave the new routes for the design and synthesis of low‐cost catalysts for electrochemical and photoelectrochemical oxygen evolution. A novel networked mesoporous nanosheet hybrid composed of Co3O4 and Co3(PO4)2 is synthesized through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Beneficial from the collective effects of special morphological design and the synergistic enhancement effect between ingredients, the Co3(PO4)2‐Co3O4 nanocomposite exhibits very high activities and excellent stabilities for the electrochemical and photoelectrochemical oxygen evolution reaction.</description><subject>Chemical synthesis</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Computer networks</subject><subject>Density</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>electron transfer induced enhancement</subject><subject>Evolutionary design method</subject><subject>hybrid structure</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>oxygen evolution</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrocatalysis</subject><subject>Ruthenium oxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhq0K1JbClSOyxIVLgj_Wu94jigJFSptK7X3ltcfExbsOtrdtfgd_GJe0QeqFw2hGM8-8Gs2L0HtK5pQQ9jkN3s8ZoQ2hshFH6JTWlM9qydpXh5qSE_QmpVtCOGVVc4xOmGwZE4Kcot8XkMI2xDAlfKnGkDYAGV9Cvg_xJxh8vuujMwkHixehVz7j9YMzgNVonhtXm5C2G5UB2xDx0lqnHYwZLz3oHIPewOC08n9XCpsDvBisH3Y_YMTLu-Cn7ML4Fr22yid495TP0M3X5c3ifLZaf_u--LKa6aqpxazn0ABljHAlTNODrHlDlJFSGmtYy2zPVF1VShrel0dwKbUACpoSwcByfoY-7WW3MfyaIOVucEmD92qE8o6OthURJdqqoB9foLdhimM5rlA1F7SWjSzUfE_pGFKKYLttdIOKu46S7tGt7tGt7uBWWfjwJDv1A5gD_mxPAdo9cO887P4j111frFb_xP8Aubij6Q</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Liu, Bin</creator><creator>Peng, Hui‐Qing</creator><creator>Ho, Cheuk‐Nam</creator><creator>Xue, Hongtao</creator><creator>Wu, Shuilin</creator><creator>Ng, Tsz‐Wai</creator><creator>Lee, Chun‐Sing</creator><creator>Zhang, Wenjun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution</title><author>Liu, Bin ; Peng, Hui‐Qing ; Ho, Cheuk‐Nam ; Xue, Hongtao ; Wu, Shuilin ; Ng, Tsz‐Wai ; Lee, Chun‐Sing ; Zhang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-b3e7e12203a5d7be86370ad888dfd292fb2a644a8d3b613388c5e1ec1052ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical synthesis</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Computer networks</topic><topic>Density</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>electron transfer induced enhancement</topic><topic>Evolutionary design method</topic><topic>hybrid structure</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>oxygen evolution</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrocatalysis</topic><topic>Ruthenium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Peng, Hui‐Qing</creatorcontrib><creatorcontrib>Ho, Cheuk‐Nam</creatorcontrib><creatorcontrib>Xue, Hongtao</creatorcontrib><creatorcontrib>Wu, Shuilin</creatorcontrib><creatorcontrib>Ng, Tsz‐Wai</creatorcontrib><creatorcontrib>Lee, Chun‐Sing</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bin</au><au>Peng, Hui‐Qing</au><au>Ho, Cheuk‐Nam</au><au>Xue, Hongtao</au><au>Wu, Shuilin</au><au>Ng, Tsz‐Wai</au><au>Lee, Chun‐Sing</au><au>Zhang, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2017-11</date><risdate>2017</risdate><volume>13</volume><issue>43</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A novel mesoporous nanosheet networked hybrid comprising Co3O4 and Co3(PO4)2 is successfully synthesized using a facile and scalable method through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Electron transfer from Co3O4 to Co3(PO4)2, together with the special networked structure and the porous nature of the nanosheets enable the Co3(PO4)2‐Co3O4 hybrid to have a high oxygen evolution reaction (OER) activity and outstanding stability in alkaline electrolyte, e.g., an overpotential of 270 mV at current density of 10 mA cm−2, and a Tafel slope of 39 mV dec−1, which are superior to most non‐noble metal‐based OER electrocatalysts reported thus far and as well the commercial RuO2 electrocatalyst. Furthermore, Co3(PO4)2‐Co3O4 hybrid is demonstrated to be used as an efficient cocatalyst to enhance the photoelectrochemical OER performance of BiVO4 photoanode. A significantly increased photocurrent density of 3.0 mA cm−2 at 1.23 V (vs reversible hydrogen electrode, RHE), and a potential reduction of 530 mV with respect to that of bare BiVO4 at the photocurrent density of 0.5 mA cm−2 are achieved. The electron transfer‐induced enhancement of OER by a hybrid structure may pave the new routes for the design and synthesis of low‐cost catalysts for electrochemical and photoelectrochemical oxygen evolution. A novel networked mesoporous nanosheet hybrid composed of Co3O4 and Co3(PO4)2 is synthesized through calcinating the carbon, cobalt hydroxy carbonate, and cobalt phosphate composite precursor. Beneficial from the collective effects of special morphological design and the synergistic enhancement effect between ingredients, the Co3(PO4)2‐Co3O4 nanocomposite exhibits very high activities and excellent stabilities for the electrochemical and photoelectrochemical oxygen evolution reaction.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28922550</pmid><doi>10.1002/smll.201701875</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2017-11, Vol.13 (43), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1940594094
source Wiley Online Library Journals Frontfile Complete
subjects Chemical synthesis
Cobalt
Cobalt oxides
Computer networks
Density
electrocatalysis
Electrocatalysts
Electron transfer
electron transfer induced enhancement
Evolutionary design method
hybrid structure
Nanosheets
Nanotechnology
oxygen evolution
Oxygen evolution reactions
Photoelectric effect
Photoelectric emission
photoelectrocatalysis
Ruthenium oxide
title Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20Nanosheet%20Networked%20Hybrids%20of%20Cobalt%20Oxide%20and%20Cobalt%20Phosphate%20for%20Efficient%20Electrochemical%20and%20Photoelectrochemical%20Oxygen%20Evolution&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Bin&rft.date=2017-11&rft.volume=13&rft.issue=43&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201701875&rft_dat=%3Cproquest_cross%3E1940594094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963516878&rft_id=info:pmid/28922550&rfr_iscdi=true