Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)

We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass ( Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine environmental research 2004-08, Vol.58 (2), p.675-679
Hauptverfasser: Hughes, Erin M., Gallagher, Evan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue 2
container_start_page 675
container_title Marine environmental research
container_volume 58
creator Hughes, Erin M.
Gallagher, Evan P.
description We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass ( Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.
doi_str_mv 10.1016/j.marenvres.2004.03.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19402544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141113604001126</els_id><sourcerecordid>18061163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEokPhFcAbECwSfBI7Ey-rqlykIjawthznuPEoiQcfZ6RueSQehGfCoxkBu65s2d_vy_8VxSvgFXBo3--q2URcDhGpqjkXFW8q3sKjYgPdVpW8VvC42HAQUAI07UXxjGjHOZdbkE-LC5Cw7bjqNsXPG-fQJmLBsd-_ysXsxzQGN5lDWJCFhY24N8lb1vuQolnIhTjnhbxjloHdTWsyafRHOBN0v6QRyRPzC5tMvMM5rGlkvSFib9kXb2PYJ4wrMTLTHPyA9O558cSZifDFebwsvn-4-Xb9qbz9-vHz9dVtaYVUqWwcGDsoywcOHJ1rjByMQtHIrm6sMkKCE3leK9kr2wydsGAGcE6pWvWAzWXx5nTuPoYfK1LSsyeL02QWDCtpUILXUoiHwS5XDW2Twe0JzN8iiuj0Pvos5l4D10dPeqf_etJHT5o3Oodz8uX5irWfcfiXO4vJwOszYMiayeXqraf_uE52INvMXZ04zM0dPEZN1uNicfAxe9VD8A8-5g_tkLmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18061163</pqid></control><display><type>article</type><title>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hughes, Erin M. ; Gallagher, Evan P.</creator><creatorcontrib>Hughes, Erin M. ; Gallagher, Evan P.</creatorcontrib><description>We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass ( Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.</description><identifier>ISSN: 0141-1136</identifier><identifier>EISSN: 1879-0291</identifier><identifier>DOI: 10.1016/j.marenvres.2004.03.061</identifier><identifier>PMID: 15178098</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Analysis of Variance ; Androstenedione ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Bass - metabolism ; beta-Naphthoflavone - pharmacokinetics ; beta-Naphthoflavone - toxicity ; Biological and medical sciences ; Biotransformation - drug effects ; Cytochrome P-450 CYP1A1 - biosynthesis ; Dinitrochlorobenzene ; DNA Primers ; DNA, Complementary - genetics ; Enzyme Induction - drug effects ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Glutamate-Cysteine Ligase - biosynthesis ; Glutamate-Cysteine Ligase - genetics ; Glutathione ; Glutathione - metabolism ; Glutathione S-transferases ; Glutathione Transferase - biosynthesis ; Glutathione Transferase - genetics ; Largemouth bass ; Liver - enzymology ; Micropterus salmoides ; Microsomes - enzymology ; mRNA ; Plasmids - genetics ; Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Sea water ecosystems ; Synecology ; β-Naphthoflavone</subject><ispartof>Marine environmental research, 2004-08, Vol.58 (2), p.675-679</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</citedby><cites>FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marenvres.2004.03.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15858156$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15178098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, Erin M.</creatorcontrib><creatorcontrib>Gallagher, Evan P.</creatorcontrib><title>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</title><title>Marine environmental research</title><addtitle>Mar Environ Res</addtitle><description>We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass ( Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.</description><subject>Analysis of Variance</subject><subject>Androstenedione</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Bass - metabolism</subject><subject>beta-Naphthoflavone - pharmacokinetics</subject><subject>beta-Naphthoflavone - toxicity</subject><subject>Biological and medical sciences</subject><subject>Biotransformation - drug effects</subject><subject>Cytochrome P-450 CYP1A1 - biosynthesis</subject><subject>Dinitrochlorobenzene</subject><subject>DNA Primers</subject><subject>DNA, Complementary - genetics</subject><subject>Enzyme Induction - drug effects</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamate-Cysteine Ligase - biosynthesis</subject><subject>Glutamate-Cysteine Ligase - genetics</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Glutathione S-transferases</subject><subject>Glutathione Transferase - biosynthesis</subject><subject>Glutathione Transferase - genetics</subject><subject>Largemouth bass</subject><subject>Liver - enzymology</subject><subject>Micropterus salmoides</subject><subject>Microsomes - enzymology</subject><subject>mRNA</subject><subject>Plasmids - genetics</subject><subject>Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>β-Naphthoflavone</subject><issn>0141-1136</issn><issn>1879-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEokPhFcAbECwSfBI7Ey-rqlykIjawthznuPEoiQcfZ6RueSQehGfCoxkBu65s2d_vy_8VxSvgFXBo3--q2URcDhGpqjkXFW8q3sKjYgPdVpW8VvC42HAQUAI07UXxjGjHOZdbkE-LC5Cw7bjqNsXPG-fQJmLBsd-_ysXsxzQGN5lDWJCFhY24N8lb1vuQolnIhTjnhbxjloHdTWsyafRHOBN0v6QRyRPzC5tMvMM5rGlkvSFib9kXb2PYJ4wrMTLTHPyA9O558cSZifDFebwsvn-4-Xb9qbz9-vHz9dVtaYVUqWwcGDsoywcOHJ1rjByMQtHIrm6sMkKCE3leK9kr2wydsGAGcE6pWvWAzWXx5nTuPoYfK1LSsyeL02QWDCtpUILXUoiHwS5XDW2Twe0JzN8iiuj0Pvos5l4D10dPeqf_etJHT5o3Oodz8uX5irWfcfiXO4vJwOszYMiayeXqraf_uE52INvMXZ04zM0dPEZN1uNicfAxe9VD8A8-5g_tkLmQ</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Hughes, Erin M.</creator><creator>Gallagher, Evan P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7QH</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>H96</scope></search><sort><creationdate>20040801</creationdate><title>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</title><author>Hughes, Erin M. ; Gallagher, Evan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of Variance</topic><topic>Androstenedione</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Bass - metabolism</topic><topic>beta-Naphthoflavone - pharmacokinetics</topic><topic>beta-Naphthoflavone - toxicity</topic><topic>Biological and medical sciences</topic><topic>Biotransformation - drug effects</topic><topic>Cytochrome P-450 CYP1A1 - biosynthesis</topic><topic>Dinitrochlorobenzene</topic><topic>DNA Primers</topic><topic>DNA, Complementary - genetics</topic><topic>Enzyme Induction - drug effects</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamate-Cysteine Ligase - biosynthesis</topic><topic>Glutamate-Cysteine Ligase - genetics</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Glutathione S-transferases</topic><topic>Glutathione Transferase - biosynthesis</topic><topic>Glutathione Transferase - genetics</topic><topic>Largemouth bass</topic><topic>Liver - enzymology</topic><topic>Micropterus salmoides</topic><topic>Microsomes - enzymology</topic><topic>mRNA</topic><topic>Plasmids - genetics</topic><topic>Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>β-Naphthoflavone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Erin M.</creatorcontrib><creatorcontrib>Gallagher, Evan P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><jtitle>Marine environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, Erin M.</au><au>Gallagher, Evan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</atitle><jtitle>Marine environmental research</jtitle><addtitle>Mar Environ Res</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>58</volume><issue>2</issue><spage>675</spage><epage>679</epage><pages>675-679</pages><issn>0141-1136</issn><eissn>1879-0291</eissn><abstract>We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass ( Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15178098</pmid><doi>10.1016/j.marenvres.2004.03.061</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-1136
ispartof Marine environmental research, 2004-08, Vol.58 (2), p.675-679
issn 0141-1136
1879-0291
language eng
recordid cdi_proquest_miscellaneous_19402544
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Analysis of Variance
Androstenedione
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Bass - metabolism
beta-Naphthoflavone - pharmacokinetics
beta-Naphthoflavone - toxicity
Biological and medical sciences
Biotransformation - drug effects
Cytochrome P-450 CYP1A1 - biosynthesis
Dinitrochlorobenzene
DNA Primers
DNA, Complementary - genetics
Enzyme Induction - drug effects
Freshwater
Fundamental and applied biological sciences. Psychology
Glutamate-Cysteine Ligase - biosynthesis
Glutamate-Cysteine Ligase - genetics
Glutathione
Glutathione - metabolism
Glutathione S-transferases
Glutathione Transferase - biosynthesis
Glutathione Transferase - genetics
Largemouth bass
Liver - enzymology
Micropterus salmoides
Microsomes - enzymology
mRNA
Plasmids - genetics
Polymerase Chain Reaction - methods
RNA, Messenger - metabolism
Sea water ecosystems
Synecology
β-Naphthoflavone
title Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20%CE%B2-naphthoflavone%20on%20hepatic%20biotransformation%20and%20glutathione%20biosynthesis%20in%20largemouth%20bass%20(%20Micropterus%20salmoides)&rft.jtitle=Marine%20environmental%20research&rft.au=Hughes,%20Erin%20M.&rft.date=2004-08-01&rft.volume=58&rft.issue=2&rft.spage=675&rft.epage=679&rft.pages=675-679&rft.issn=0141-1136&rft.eissn=1879-0291&rft_id=info:doi/10.1016/j.marenvres.2004.03.061&rft_dat=%3Cproquest_cross%3E18061163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18061163&rft_id=info:pmid/15178098&rft_els_id=S0141113604001126&rfr_iscdi=true