Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)
We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass ( Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved...
Gespeichert in:
Veröffentlicht in: | Marine environmental research 2004-08, Vol.58 (2), p.675-679 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 679 |
---|---|
container_issue | 2 |
container_start_page | 675 |
container_title | Marine environmental research |
container_volume | 58 |
creator | Hughes, Erin M. Gallagher, Evan P. |
description | We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (
Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF. |
doi_str_mv | 10.1016/j.marenvres.2004.03.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19402544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141113604001126</els_id><sourcerecordid>18061163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEokPhFcAbECwSfBI7Ey-rqlykIjawthznuPEoiQcfZ6RueSQehGfCoxkBu65s2d_vy_8VxSvgFXBo3--q2URcDhGpqjkXFW8q3sKjYgPdVpW8VvC42HAQUAI07UXxjGjHOZdbkE-LC5Cw7bjqNsXPG-fQJmLBsd-_ysXsxzQGN5lDWJCFhY24N8lb1vuQolnIhTjnhbxjloHdTWsyafRHOBN0v6QRyRPzC5tMvMM5rGlkvSFib9kXb2PYJ4wrMTLTHPyA9O558cSZifDFebwsvn-4-Xb9qbz9-vHz9dVtaYVUqWwcGDsoywcOHJ1rjByMQtHIrm6sMkKCE3leK9kr2wydsGAGcE6pWvWAzWXx5nTuPoYfK1LSsyeL02QWDCtpUILXUoiHwS5XDW2Twe0JzN8iiuj0Pvos5l4D10dPeqf_etJHT5o3Oodz8uX5irWfcfiXO4vJwOszYMiayeXqraf_uE52INvMXZ04zM0dPEZN1uNicfAxe9VD8A8-5g_tkLmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18061163</pqid></control><display><type>article</type><title>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hughes, Erin M. ; Gallagher, Evan P.</creator><creatorcontrib>Hughes, Erin M. ; Gallagher, Evan P.</creatorcontrib><description>We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (
Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.</description><identifier>ISSN: 0141-1136</identifier><identifier>EISSN: 1879-0291</identifier><identifier>DOI: 10.1016/j.marenvres.2004.03.061</identifier><identifier>PMID: 15178098</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Analysis of Variance ; Androstenedione ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Bass - metabolism ; beta-Naphthoflavone - pharmacokinetics ; beta-Naphthoflavone - toxicity ; Biological and medical sciences ; Biotransformation - drug effects ; Cytochrome P-450 CYP1A1 - biosynthesis ; Dinitrochlorobenzene ; DNA Primers ; DNA, Complementary - genetics ; Enzyme Induction - drug effects ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Glutamate-Cysteine Ligase - biosynthesis ; Glutamate-Cysteine Ligase - genetics ; Glutathione ; Glutathione - metabolism ; Glutathione S-transferases ; Glutathione Transferase - biosynthesis ; Glutathione Transferase - genetics ; Largemouth bass ; Liver - enzymology ; Micropterus salmoides ; Microsomes - enzymology ; mRNA ; Plasmids - genetics ; Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Sea water ecosystems ; Synecology ; β-Naphthoflavone</subject><ispartof>Marine environmental research, 2004-08, Vol.58 (2), p.675-679</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</citedby><cites>FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marenvres.2004.03.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15858156$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15178098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, Erin M.</creatorcontrib><creatorcontrib>Gallagher, Evan P.</creatorcontrib><title>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</title><title>Marine environmental research</title><addtitle>Mar Environ Res</addtitle><description>We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (
Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.</description><subject>Analysis of Variance</subject><subject>Androstenedione</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Bass - metabolism</subject><subject>beta-Naphthoflavone - pharmacokinetics</subject><subject>beta-Naphthoflavone - toxicity</subject><subject>Biological and medical sciences</subject><subject>Biotransformation - drug effects</subject><subject>Cytochrome P-450 CYP1A1 - biosynthesis</subject><subject>Dinitrochlorobenzene</subject><subject>DNA Primers</subject><subject>DNA, Complementary - genetics</subject><subject>Enzyme Induction - drug effects</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamate-Cysteine Ligase - biosynthesis</subject><subject>Glutamate-Cysteine Ligase - genetics</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Glutathione S-transferases</subject><subject>Glutathione Transferase - biosynthesis</subject><subject>Glutathione Transferase - genetics</subject><subject>Largemouth bass</subject><subject>Liver - enzymology</subject><subject>Micropterus salmoides</subject><subject>Microsomes - enzymology</subject><subject>mRNA</subject><subject>Plasmids - genetics</subject><subject>Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>β-Naphthoflavone</subject><issn>0141-1136</issn><issn>1879-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEokPhFcAbECwSfBI7Ey-rqlykIjawthznuPEoiQcfZ6RueSQehGfCoxkBu65s2d_vy_8VxSvgFXBo3--q2URcDhGpqjkXFW8q3sKjYgPdVpW8VvC42HAQUAI07UXxjGjHOZdbkE-LC5Cw7bjqNsXPG-fQJmLBsd-_ysXsxzQGN5lDWJCFhY24N8lb1vuQolnIhTjnhbxjloHdTWsyafRHOBN0v6QRyRPzC5tMvMM5rGlkvSFib9kXb2PYJ4wrMTLTHPyA9O558cSZifDFebwsvn-4-Xb9qbz9-vHz9dVtaYVUqWwcGDsoywcOHJ1rjByMQtHIrm6sMkKCE3leK9kr2wydsGAGcE6pWvWAzWXx5nTuPoYfK1LSsyeL02QWDCtpUILXUoiHwS5XDW2Twe0JzN8iiuj0Pvos5l4D10dPeqf_etJHT5o3Oodz8uX5irWfcfiXO4vJwOszYMiayeXqraf_uE52INvMXZ04zM0dPEZN1uNicfAxe9VD8A8-5g_tkLmQ</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Hughes, Erin M.</creator><creator>Gallagher, Evan P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7QH</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>H96</scope></search><sort><creationdate>20040801</creationdate><title>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</title><author>Hughes, Erin M. ; Gallagher, Evan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-3f1acd9c0d010eff3a5da9e435823c9a451f4582295b9c3d84c1ad1ff9929b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of Variance</topic><topic>Androstenedione</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Bass - metabolism</topic><topic>beta-Naphthoflavone - pharmacokinetics</topic><topic>beta-Naphthoflavone - toxicity</topic><topic>Biological and medical sciences</topic><topic>Biotransformation - drug effects</topic><topic>Cytochrome P-450 CYP1A1 - biosynthesis</topic><topic>Dinitrochlorobenzene</topic><topic>DNA Primers</topic><topic>DNA, Complementary - genetics</topic><topic>Enzyme Induction - drug effects</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamate-Cysteine Ligase - biosynthesis</topic><topic>Glutamate-Cysteine Ligase - genetics</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Glutathione S-transferases</topic><topic>Glutathione Transferase - biosynthesis</topic><topic>Glutathione Transferase - genetics</topic><topic>Largemouth bass</topic><topic>Liver - enzymology</topic><topic>Micropterus salmoides</topic><topic>Microsomes - enzymology</topic><topic>mRNA</topic><topic>Plasmids - genetics</topic><topic>Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>β-Naphthoflavone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Erin M.</creatorcontrib><creatorcontrib>Gallagher, Evan P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><jtitle>Marine environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, Erin M.</au><au>Gallagher, Evan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides)</atitle><jtitle>Marine environmental research</jtitle><addtitle>Mar Environ Res</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>58</volume><issue>2</issue><spage>675</spage><epage>679</epage><pages>675-679</pages><issn>0141-1136</issn><eissn>1879-0291</eissn><abstract>We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (
Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15178098</pmid><doi>10.1016/j.marenvres.2004.03.061</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-1136 |
ispartof | Marine environmental research, 2004-08, Vol.58 (2), p.675-679 |
issn | 0141-1136 1879-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_19402544 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Analysis of Variance Androstenedione Animal and plant ecology Animal, plant and microbial ecology Animals Bass - metabolism beta-Naphthoflavone - pharmacokinetics beta-Naphthoflavone - toxicity Biological and medical sciences Biotransformation - drug effects Cytochrome P-450 CYP1A1 - biosynthesis Dinitrochlorobenzene DNA Primers DNA, Complementary - genetics Enzyme Induction - drug effects Freshwater Fundamental and applied biological sciences. Psychology Glutamate-Cysteine Ligase - biosynthesis Glutamate-Cysteine Ligase - genetics Glutathione Glutathione - metabolism Glutathione S-transferases Glutathione Transferase - biosynthesis Glutathione Transferase - genetics Largemouth bass Liver - enzymology Micropterus salmoides Microsomes - enzymology mRNA Plasmids - genetics Polymerase Chain Reaction - methods RNA, Messenger - metabolism Sea water ecosystems Synecology β-Naphthoflavone |
title | Effects of β-naphthoflavone on hepatic biotransformation and glutathione biosynthesis in largemouth bass ( Micropterus salmoides) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20%CE%B2-naphthoflavone%20on%20hepatic%20biotransformation%20and%20glutathione%20biosynthesis%20in%20largemouth%20bass%20(%20Micropterus%20salmoides)&rft.jtitle=Marine%20environmental%20research&rft.au=Hughes,%20Erin%20M.&rft.date=2004-08-01&rft.volume=58&rft.issue=2&rft.spage=675&rft.epage=679&rft.pages=675-679&rft.issn=0141-1136&rft.eissn=1879-0291&rft_id=info:doi/10.1016/j.marenvres.2004.03.061&rft_dat=%3Cproquest_cross%3E18061163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18061163&rft_id=info:pmid/15178098&rft_els_id=S0141113604001126&rfr_iscdi=true |