Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration
Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Soun...
Gespeichert in:
Veröffentlicht in: | Journal of evolutionary biology 2017-11, Vol.30 (11), p.2068-2078 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2078 |
---|---|
container_issue | 11 |
container_start_page | 2068 |
container_title | Journal of evolutionary biology |
container_volume | 30 |
creator | Montealegre‐Z, F. Ogden, J. Jonsson, T. Soulsbury, C. D. |
description | Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens). |
doi_str_mv | 10.1111/jeb.13179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940190180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1960831833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-f282815612055d110c610580000ed4cf61560d3a7a366b7b4e2b1d55ef047a373</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EoqVw4AWQJS7tIe1M_ngdblCVlqpVLyBxixx7susliVM72SrvwQPXYQsHpM7FnpnffKPRx9h7hFOMcbal-hQzXJUv2CHmKSQlAr6Mf0BIQODPA_YmhC0AirwoXrODVJYpirI8ZL9vnR82rnVrq1XLDY3kO9urfgzcNTzYdR_LWnlvyfPG0_1EvZ657fkvNc7GmsCP7_y4cUOcVCefuOLadYPyarQ74iqOz8EGPgXbr3lt3bCJ-bKLdtZELVr2PCzNna2XKde_Za8a1QZ69_QesR9fL76fXyU3d5ffzj_fJDqTskyaVKYSC4EpFIVBBC0QCgkxyOS6EbEHJlMrlQlRr-qc0hpNUVADeaytsiN2vNcdvIt3hbHqbNDUtqonN4UKyxywBJQQ0Y__oVs3-XjcQgmQGcosi9TJntLeheCpqQZvO-XnCqFarKqiVdUfqyL74Ulxqjsy_8i_3kTgbA882Jbm55Wq64sve8lHnc2erg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960831833</pqid></control><display><type>article</type><title>Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Montealegre‐Z, F. ; Ogden, J. ; Jonsson, T. ; Soulsbury, C. D.</creator><creatorcontrib>Montealegre‐Z, F. ; Ogden, J. ; Jonsson, T. ; Soulsbury, C. D.</creatorcontrib><description>Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens).</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.13179</identifier><identifier>PMID: 28921699</identifier><language>eng</language><publisher>Switzerland: Blackwell Publishing Ltd</publisher><subject>Animal Communication ; Animals ; bioacoustics ; Biophysical Phenomena - physiology ; Body size ; Carrier frequencies ; Comparative analysis ; Drum ; fossil ; Fossils ; insect ; Insects ; Mathematical models ; Morphology ; Orthoptera ; Orthoptera - anatomy & histology ; Orthoptera - physiology ; Phylogenetics ; Phylogeny ; Singing ; Song ; Sound ; Sound generation ; Sound generators ; sound production ; Species ; Stridulation ; Vibration ; Vibration analysis ; Vibrations ; Wings, Animal - anatomy & histology</subject><ispartof>Journal of evolutionary biology, 2017-11, Vol.30 (11), p.2068-2078</ispartof><rights>2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology</rights><rights>2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.</rights><rights>Copyright © 2017 European Society for Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-f282815612055d110c610580000ed4cf61560d3a7a366b7b4e2b1d55ef047a373</citedby><cites>FETCH-LOGICAL-c3889-f282815612055d110c610580000ed4cf61560d3a7a366b7b4e2b1d55ef047a373</cites><orcidid>0000-0001-5186-2186 ; 0000-0002-5049-7612 ; 0000-0001-8808-5210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.13179$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.13179$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28921699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montealegre‐Z, F.</creatorcontrib><creatorcontrib>Ogden, J.</creatorcontrib><creatorcontrib>Jonsson, T.</creatorcontrib><creatorcontrib>Soulsbury, C. D.</creatorcontrib><title>Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens).</description><subject>Animal Communication</subject><subject>Animals</subject><subject>bioacoustics</subject><subject>Biophysical Phenomena - physiology</subject><subject>Body size</subject><subject>Carrier frequencies</subject><subject>Comparative analysis</subject><subject>Drum</subject><subject>fossil</subject><subject>Fossils</subject><subject>insect</subject><subject>Insects</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Orthoptera</subject><subject>Orthoptera - anatomy & histology</subject><subject>Orthoptera - physiology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Singing</subject><subject>Song</subject><subject>Sound</subject><subject>Sound generation</subject><subject>Sound generators</subject><subject>sound production</subject><subject>Species</subject><subject>Stridulation</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><subject>Wings, Animal - anatomy & histology</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQxi0EoqVw4AWQJS7tIe1M_ngdblCVlqpVLyBxixx7susliVM72SrvwQPXYQsHpM7FnpnffKPRx9h7hFOMcbal-hQzXJUv2CHmKSQlAr6Mf0BIQODPA_YmhC0AirwoXrODVJYpirI8ZL9vnR82rnVrq1XLDY3kO9urfgzcNTzYdR_LWnlvyfPG0_1EvZ657fkvNc7GmsCP7_y4cUOcVCefuOLadYPyarQ74iqOz8EGPgXbr3lt3bCJ-bKLdtZELVr2PCzNna2XKde_Za8a1QZ69_QesR9fL76fXyU3d5ffzj_fJDqTskyaVKYSC4EpFIVBBC0QCgkxyOS6EbEHJlMrlQlRr-qc0hpNUVADeaytsiN2vNcdvIt3hbHqbNDUtqonN4UKyxywBJQQ0Y__oVs3-XjcQgmQGcosi9TJntLeheCpqQZvO-XnCqFarKqiVdUfqyL74Ulxqjsy_8i_3kTgbA882Jbm55Wq64sve8lHnc2erg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Montealegre‐Z, F.</creator><creator>Ogden, J.</creator><creator>Jonsson, T.</creator><creator>Soulsbury, C. D.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5186-2186</orcidid><orcidid>https://orcid.org/0000-0002-5049-7612</orcidid><orcidid>https://orcid.org/0000-0001-8808-5210</orcidid></search><sort><creationdate>201711</creationdate><title>Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration</title><author>Montealegre‐Z, F. ; Ogden, J. ; Jonsson, T. ; Soulsbury, C. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-f282815612055d110c610580000ed4cf61560d3a7a366b7b4e2b1d55ef047a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal Communication</topic><topic>Animals</topic><topic>bioacoustics</topic><topic>Biophysical Phenomena - physiology</topic><topic>Body size</topic><topic>Carrier frequencies</topic><topic>Comparative analysis</topic><topic>Drum</topic><topic>fossil</topic><topic>Fossils</topic><topic>insect</topic><topic>Insects</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Orthoptera</topic><topic>Orthoptera - anatomy & histology</topic><topic>Orthoptera - physiology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Singing</topic><topic>Song</topic><topic>Sound</topic><topic>Sound generation</topic><topic>Sound generators</topic><topic>sound production</topic><topic>Species</topic><topic>Stridulation</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><topic>Wings, Animal - anatomy & histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montealegre‐Z, F.</creatorcontrib><creatorcontrib>Ogden, J.</creatorcontrib><creatorcontrib>Jonsson, T.</creatorcontrib><creatorcontrib>Soulsbury, C. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montealegre‐Z, F.</au><au>Ogden, J.</au><au>Jonsson, T.</au><au>Soulsbury, C. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>30</volume><issue>11</issue><spage>2068</spage><epage>2078</epage><pages>2068-2078</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens).</abstract><cop>Switzerland</cop><pub>Blackwell Publishing Ltd</pub><pmid>28921699</pmid><doi>10.1111/jeb.13179</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5186-2186</orcidid><orcidid>https://orcid.org/0000-0002-5049-7612</orcidid><orcidid>https://orcid.org/0000-0001-8808-5210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-061X |
ispartof | Journal of evolutionary biology, 2017-11, Vol.30 (11), p.2068-2078 |
issn | 1010-061X 1420-9101 |
language | eng |
recordid | cdi_proquest_miscellaneous_1940190180 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Animal Communication Animals bioacoustics Biophysical Phenomena - physiology Body size Carrier frequencies Comparative analysis Drum fossil Fossils insect Insects Mathematical models Morphology Orthoptera Orthoptera - anatomy & histology Orthoptera - physiology Phylogenetics Phylogeny Singing Song Sound Sound generation Sound generators sound production Species Stridulation Vibration Vibration analysis Vibrations Wings, Animal - anatomy & histology |
title | Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20determinants%20of%20signal%20carrier%20frequency%20in%20katydids%20(Orthoptera):%20a%20comparative%20analysis%20using%20biophysical%20evidence%20of%20wing%20vibration&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Montealegre%E2%80%90Z,%20F.&rft.date=2017-11&rft.volume=30&rft.issue=11&rft.spage=2068&rft.epage=2078&rft.pages=2068-2078&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.13179&rft_dat=%3Cproquest_cross%3E1960831833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960831833&rft_id=info:pmid/28921699&rfr_iscdi=true |