Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells
Treatment with tyrosine kinase inhibitors results in a survival benefit in patients with chronic myeloid leukemia (CML). However, relapse due to persistent leukemic stem cells (LSCs) requires additional selective targets for efficient eradication of the disease. Metabolomic analyses on patient-deriv...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2017-10, Vol.23 (10), p.1234-1240 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1240 |
---|---|
container_issue | 10 |
container_start_page | 1234 |
container_title | Nature medicine |
container_volume | 23 |
creator | Kuntz, Elodie M Baquero, Pablo Michie, Alison M Dunn, Karen Tardito, Saverio Holyoake, Tessa L Helgason, G Vignir Gottlieb, Eyal |
description | Treatment with tyrosine kinase inhibitors results in a survival benefit in patients with chronic myeloid leukemia (CML). However, relapse due to persistent leukemic stem cells (LSCs) requires additional selective targets for efficient eradication of the disease. Metabolomic analyses on patient-derived CML LSCs reveal that these have an increased dependency on oxidative metabolism that renders them sensitive to treatment with tigecycline, an FDA-approved inhibitor of mitochondrial translation. These findings uncover a new metabolic vulnerability in CML and provide a rational approach for further clinical evaluation.
Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival
1
. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs)
2
,
3
,
4
. Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically
5
,
6
. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner
7
, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell–enriched (CD34
+
and CD34
+
CD38
−
) and differentiated (CD34
−
) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope–assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both
in vitro
and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease. |
doi_str_mv | 10.1038/nm.4399 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940188229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A508315560</galeid><sourcerecordid>A508315560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-259711a48c3d15e1d4228b9cd5f1924f8802e939d29ede5da331ed5e260901523</originalsourceid><addsrcrecordid>eNqN0ltrHCEUAOChtDSXlv6DIhR6eZitOuOuPobQSyAQaNPSNzF6ZsbU0Y06Jfvv45C0yYZ9KCLePg9yPFX1iuAFwQ3_6MdF2wjxpNonrF3WZIV_PS1zvOI1F2y5Vx2kdIkxbjATz6s9ygXFgon9Kp6r2EO2vkejzUEPwZtolUPh2hqV7R9A6yGk0uPGlXXwCKIyVqsMCeWhLNabOkKyKSufkR5i8FajcQMuWIMcTL9htAqlDCPS4Fx6UT3rlEvw8m48rH58_nR-_LU-Pftycnx0Wutly3JNmVgRolquG0MYENNSyi-ENqwjgrYd55iCaIShAgwwo5qGgGFAl1hgwmhzWL2_jbuO4WqClOVo0_wC5SFMSRLRYsI5paLQN4_oZZiiL68rirXNqiGM36teOZDWdyFHpeeg8ohhXgxb4qLqHaoHX1LlgofOlu0tv9jhSzMlb3rnhQ9bF4rJcJ17NaUkT75_-3979nPbvn1gB1AuDym4af70tA3f3UIdQ0oROrmOdlRxIwmWczlKP8q5HIt8fZfX6WIE88_9rb_7P0rlyPcQHyT-UawbafPkzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954373158</pqid></control><display><type>article</type><title>Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kuntz, Elodie M ; Baquero, Pablo ; Michie, Alison M ; Dunn, Karen ; Tardito, Saverio ; Holyoake, Tessa L ; Helgason, G Vignir ; Gottlieb, Eyal</creator><creatorcontrib>Kuntz, Elodie M ; Baquero, Pablo ; Michie, Alison M ; Dunn, Karen ; Tardito, Saverio ; Holyoake, Tessa L ; Helgason, G Vignir ; Gottlieb, Eyal</creatorcontrib><description>Treatment with tyrosine kinase inhibitors results in a survival benefit in patients with chronic myeloid leukemia (CML). However, relapse due to persistent leukemic stem cells (LSCs) requires additional selective targets for efficient eradication of the disease. Metabolomic analyses on patient-derived CML LSCs reveal that these have an increased dependency on oxidative metabolism that renders them sensitive to treatment with tigecycline, an FDA-approved inhibitor of mitochondrial translation. These findings uncover a new metabolic vulnerability in CML and provide a rational approach for further clinical evaluation.
Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival
1
. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs)
2
,
3
,
4
. Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically
5
,
6
. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner
7
, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell–enriched (CD34
+
and CD34
+
CD38
−
) and differentiated (CD34
−
) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope–assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both
in vitro
and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.4399</identifier><identifier>PMID: 28920959</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/100 ; 13/31 ; 631/67/2327 ; 631/67/71 ; 64/60 ; 82/58 ; Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Biomedicine ; Blotting, Western ; Cancer Research ; Care and treatment ; CD34 antigen ; CD38 antigen ; Cell Survival - drug effects ; Chromatography, Liquid ; Chronic illnesses ; Chronic myeloid leukemia ; Development and progression ; Disease resistance ; Drug Resistance, Neoplasm - drug effects ; Drug therapy ; Drug Therapy, Combination ; Female ; Genetic aspects ; Genotypes ; Health aspects ; Humans ; Hypoglycemic Agents - pharmacology ; Imatinib ; Imatinib Mesylate - pharmacology ; Imatinib Mesylate - therapeutic use ; In Vitro Techniques ; Infectious Diseases ; letter ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Mass Spectrometry ; Metabolic Diseases ; Metabolism ; Metabolomics ; Mice ; Mice, Inbred NOD ; Minimal residual disease ; Minocycline - analogs & derivatives ; Minocycline - pharmacology ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Molecular Medicine ; Myeloid leukemia ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Neurosciences ; Oxidation resistance ; Oxidative metabolism ; Oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Oxidative stress ; Phenformin - pharmacology ; Phosphorylation ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Protein-tyrosine kinase ; Reverse Transcriptase Polymerase Chain Reaction ; Stable isotopes ; Stem cells ; Survival ; Target recognition ; Tigecycline ; Transformed cells ; Tumor Cells, Cultured ; Tumor Stem Cell Assay ; Tyrosine ; Up-Regulation ; Xenograft Model Antitumor Assays ; Xenografts ; Xenotransplantation</subject><ispartof>Nature medicine, 2017-10, Vol.23 (10), p.1234-1240</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-259711a48c3d15e1d4228b9cd5f1924f8802e939d29ede5da331ed5e260901523</citedby><cites>FETCH-LOGICAL-c645t-259711a48c3d15e1d4228b9cd5f1924f8802e939d29ede5da331ed5e260901523</cites><orcidid>0000-0002-9770-0956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.4399$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.4399$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28920959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuntz, Elodie M</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Michie, Alison M</creatorcontrib><creatorcontrib>Dunn, Karen</creatorcontrib><creatorcontrib>Tardito, Saverio</creatorcontrib><creatorcontrib>Holyoake, Tessa L</creatorcontrib><creatorcontrib>Helgason, G Vignir</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><title>Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Treatment with tyrosine kinase inhibitors results in a survival benefit in patients with chronic myeloid leukemia (CML). However, relapse due to persistent leukemic stem cells (LSCs) requires additional selective targets for efficient eradication of the disease. Metabolomic analyses on patient-derived CML LSCs reveal that these have an increased dependency on oxidative metabolism that renders them sensitive to treatment with tigecycline, an FDA-approved inhibitor of mitochondrial translation. These findings uncover a new metabolic vulnerability in CML and provide a rational approach for further clinical evaluation.
Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival
1
. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs)
2
,
3
,
4
. Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically
5
,
6
. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner
7
, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell–enriched (CD34
+
and CD34
+
CD38
−
) and differentiated (CD34
−
) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope–assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both
in vitro
and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.</description><subject>13/100</subject><subject>13/31</subject><subject>631/67/2327</subject><subject>631/67/71</subject><subject>64/60</subject><subject>82/58</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Biomedicine</subject><subject>Blotting, Western</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>CD34 antigen</subject><subject>CD38 antigen</subject><subject>Cell Survival - drug effects</subject><subject>Chromatography, Liquid</subject><subject>Chronic illnesses</subject><subject>Chronic myeloid leukemia</subject><subject>Development and progression</subject><subject>Disease resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug therapy</subject><subject>Drug Therapy, Combination</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Imatinib</subject><subject>Imatinib Mesylate - pharmacology</subject><subject>Imatinib Mesylate - therapeutic use</subject><subject>In Vitro Techniques</subject><subject>Infectious Diseases</subject><subject>letter</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Mass Spectrometry</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Minimal residual disease</subject><subject>Minocycline - analogs & derivatives</subject><subject>Minocycline - pharmacology</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Medicine</subject><subject>Myeloid leukemia</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neurosciences</subject><subject>Oxidation resistance</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oxidative stress</subject><subject>Phenformin - pharmacology</subject><subject>Phosphorylation</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein-tyrosine kinase</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Stable isotopes</subject><subject>Stem cells</subject><subject>Survival</subject><subject>Target recognition</subject><subject>Tigecycline</subject><subject>Transformed cells</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Stem Cell Assay</subject><subject>Tyrosine</subject><subject>Up-Regulation</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ltrHCEUAOChtDSXlv6DIhR6eZitOuOuPobQSyAQaNPSNzF6ZsbU0Y06Jfvv45C0yYZ9KCLePg9yPFX1iuAFwQ3_6MdF2wjxpNonrF3WZIV_PS1zvOI1F2y5Vx2kdIkxbjATz6s9ygXFgon9Kp6r2EO2vkejzUEPwZtolUPh2hqV7R9A6yGk0uPGlXXwCKIyVqsMCeWhLNabOkKyKSufkR5i8FajcQMuWIMcTL9htAqlDCPS4Fx6UT3rlEvw8m48rH58_nR-_LU-Pftycnx0Wutly3JNmVgRolquG0MYENNSyi-ENqwjgrYd55iCaIShAgwwo5qGgGFAl1hgwmhzWL2_jbuO4WqClOVo0_wC5SFMSRLRYsI5paLQN4_oZZiiL68rirXNqiGM36teOZDWdyFHpeeg8ohhXgxb4qLqHaoHX1LlgofOlu0tv9jhSzMlb3rnhQ9bF4rJcJ17NaUkT75_-3979nPbvn1gB1AuDym4af70tA3f3UIdQ0oROrmOdlRxIwmWczlKP8q5HIt8fZfX6WIE88_9rb_7P0rlyPcQHyT-UawbafPkzg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Kuntz, Elodie M</creator><creator>Baquero, Pablo</creator><creator>Michie, Alison M</creator><creator>Dunn, Karen</creator><creator>Tardito, Saverio</creator><creator>Holyoake, Tessa L</creator><creator>Helgason, G Vignir</creator><creator>Gottlieb, Eyal</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9770-0956</orcidid></search><sort><creationdate>20171001</creationdate><title>Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells</title><author>Kuntz, Elodie M ; Baquero, Pablo ; Michie, Alison M ; Dunn, Karen ; Tardito, Saverio ; Holyoake, Tessa L ; Helgason, G Vignir ; Gottlieb, Eyal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-259711a48c3d15e1d4228b9cd5f1924f8802e939d29ede5da331ed5e260901523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/100</topic><topic>13/31</topic><topic>631/67/2327</topic><topic>631/67/71</topic><topic>64/60</topic><topic>82/58</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Biomedicine</topic><topic>Blotting, Western</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>CD34 antigen</topic><topic>CD38 antigen</topic><topic>Cell Survival - drug effects</topic><topic>Chromatography, Liquid</topic><topic>Chronic illnesses</topic><topic>Chronic myeloid leukemia</topic><topic>Development and progression</topic><topic>Disease resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug therapy</topic><topic>Drug Therapy, Combination</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Imatinib</topic><topic>Imatinib Mesylate - pharmacology</topic><topic>Imatinib Mesylate - therapeutic use</topic><topic>In Vitro Techniques</topic><topic>Infectious Diseases</topic><topic>letter</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Mass Spectrometry</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Minimal residual disease</topic><topic>Minocycline - analogs & derivatives</topic><topic>Minocycline - pharmacology</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Medicine</topic><topic>Myeloid leukemia</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neurosciences</topic><topic>Oxidation resistance</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oxidative stress</topic><topic>Phenformin - pharmacology</topic><topic>Phosphorylation</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein-tyrosine kinase</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Stable isotopes</topic><topic>Stem cells</topic><topic>Survival</topic><topic>Target recognition</topic><topic>Tigecycline</topic><topic>Transformed cells</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Stem Cell Assay</topic><topic>Tyrosine</topic><topic>Up-Regulation</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuntz, Elodie M</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Michie, Alison M</creatorcontrib><creatorcontrib>Dunn, Karen</creatorcontrib><creatorcontrib>Tardito, Saverio</creatorcontrib><creatorcontrib>Holyoake, Tessa L</creatorcontrib><creatorcontrib>Helgason, G Vignir</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuntz, Elodie M</au><au>Baquero, Pablo</au><au>Michie, Alison M</au><au>Dunn, Karen</au><au>Tardito, Saverio</au><au>Holyoake, Tessa L</au><au>Helgason, G Vignir</au><au>Gottlieb, Eyal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>23</volume><issue>10</issue><spage>1234</spage><epage>1240</epage><pages>1234-1240</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Treatment with tyrosine kinase inhibitors results in a survival benefit in patients with chronic myeloid leukemia (CML). However, relapse due to persistent leukemic stem cells (LSCs) requires additional selective targets for efficient eradication of the disease. Metabolomic analyses on patient-derived CML LSCs reveal that these have an increased dependency on oxidative metabolism that renders them sensitive to treatment with tigecycline, an FDA-approved inhibitor of mitochondrial translation. These findings uncover a new metabolic vulnerability in CML and provide a rational approach for further clinical evaluation.
Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival
1
. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs)
2
,
3
,
4
. Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically
5
,
6
. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner
7
, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell–enriched (CD34
+
and CD34
+
CD38
−
) and differentiated (CD34
−
) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope–assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both
in vitro
and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28920959</pmid><doi>10.1038/nm.4399</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9770-0956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2017-10, Vol.23 (10), p.1234-1240 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_1940188229 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 13/100 13/31 631/67/2327 631/67/71 64/60 82/58 Animals Anti-Bacterial Agents - pharmacology Antibiotics Biomedicine Blotting, Western Cancer Research Care and treatment CD34 antigen CD38 antigen Cell Survival - drug effects Chromatography, Liquid Chronic illnesses Chronic myeloid leukemia Development and progression Disease resistance Drug Resistance, Neoplasm - drug effects Drug therapy Drug Therapy, Combination Female Genetic aspects Genotypes Health aspects Humans Hypoglycemic Agents - pharmacology Imatinib Imatinib Mesylate - pharmacology Imatinib Mesylate - therapeutic use In Vitro Techniques Infectious Diseases letter Leukemia Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Mass Spectrometry Metabolic Diseases Metabolism Metabolomics Mice Mice, Inbred NOD Minimal residual disease Minocycline - analogs & derivatives Minocycline - pharmacology Mitochondria Mitochondria - drug effects Mitochondria - metabolism Molecular Medicine Myeloid leukemia Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Neurosciences Oxidation resistance Oxidative metabolism Oxidative phosphorylation Oxidative Phosphorylation - drug effects Oxidative stress Phenformin - pharmacology Phosphorylation Protein Kinase Inhibitors - pharmacology Protein Kinase Inhibitors - therapeutic use Protein-tyrosine kinase Reverse Transcriptase Polymerase Chain Reaction Stable isotopes Stem cells Survival Target recognition Tigecycline Transformed cells Tumor Cells, Cultured Tumor Stem Cell Assay Tyrosine Up-Regulation Xenograft Model Antitumor Assays Xenografts Xenotransplantation |
title | Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20mitochondrial%20oxidative%20phosphorylation%20eradicates%20therapy-resistant%20chronic%20myeloid%20leukemia%20stem%20cells&rft.jtitle=Nature%20medicine&rft.au=Kuntz,%20Elodie%20M&rft.date=2017-10-01&rft.volume=23&rft.issue=10&rft.spage=1234&rft.epage=1240&rft.pages=1234-1240&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.4399&rft_dat=%3Cgale_proqu%3EA508315560%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954373158&rft_id=info:pmid/28920959&rft_galeid=A508315560&rfr_iscdi=true |