Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps
Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast inter...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2018-09, Vol.48 (9), p.2609-2619 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2619 |
---|---|
container_issue | 9 |
container_start_page | 2609 |
container_title | IEEE transactions on cybernetics |
container_volume | 48 |
creator | Li, Xuelong Liu, Kang Dong, Yongsheng |
description | Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time. |
doi_str_mv | 10.1109/TCYB.2017.2747143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940188092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8031960</ieee_id><sourcerecordid>2117140809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-ABFkwYuXrfnafBzb0qpQ8GBFPIW4mdUtbXdNdqX-e7O09mAuEzLPvEwehC4JHhGC9d1y-jYZUUzkiEouCWcnqE-JUCmlMjs93oXsoWEIKxyPik9anaMeVZpiTWgfjZ_bGnxd7mCdTmwAl8wrDx--arcume0ab_OmrLbJa9l8JnMbmmTsbN2U35AsfbmxdbhAZ4VdBxge6gC9zGfL6UO6eLp_nI4Xac64blInVOaYwgXT2mEGDgqRSU6lzZjkmZPCgQRBuRBccgVYCCicFVjnTgii2ADd7nNrX321EBqzKUMO67XdQtUGQzTHRCmsaURv_qGrqvXbuJ2hhERXOGKRInsq91UIHgpTdz_yP4Zg0yk2nWLTKTYHxXHm-pDcvm_AHSf-hEbgag-UAHBsK8yIFpj9Am4KfUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117140809</pqid></control><display><type>article</type><title>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xuelong ; Liu, Kang ; Dong, Yongsheng</creator><creatorcontrib>Li, Xuelong ; Liu, Kang ; Dong, Yongsheng</creatorcontrib><description>Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2747143</identifier><identifier>PMID: 28920912</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Fast adaptive trimaps (FATs) ; Fats ; Feature extraction ; foreground extraction ; Gravity ; Histograms ; image analysis ; Image color analysis ; Image segmentation ; Optics ; superpixel</subject><ispartof>IEEE transactions on cybernetics, 2018-09, Vol.48 (9), p.2609-2619</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</citedby><cites>FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</cites><orcidid>0000-0003-2924-946X ; 0000-0002-1965-240X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8031960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8031960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28920912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuelong</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Dong, Yongsheng</creatorcontrib><title>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.</description><subject>Fast adaptive trimaps (FATs)</subject><subject>Fats</subject><subject>Feature extraction</subject><subject>foreground extraction</subject><subject>Gravity</subject><subject>Histograms</subject><subject>image analysis</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Optics</subject><subject>superpixel</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-ABFkwYuXrfnafBzb0qpQ8GBFPIW4mdUtbXdNdqX-e7O09mAuEzLPvEwehC4JHhGC9d1y-jYZUUzkiEouCWcnqE-JUCmlMjs93oXsoWEIKxyPik9anaMeVZpiTWgfjZ_bGnxd7mCdTmwAl8wrDx--arcume0ab_OmrLbJa9l8JnMbmmTsbN2U35AsfbmxdbhAZ4VdBxge6gC9zGfL6UO6eLp_nI4Xac64blInVOaYwgXT2mEGDgqRSU6lzZjkmZPCgQRBuRBccgVYCCicFVjnTgii2ADd7nNrX321EBqzKUMO67XdQtUGQzTHRCmsaURv_qGrqvXbuJ2hhERXOGKRInsq91UIHgpTdz_yP4Zg0yk2nWLTKTYHxXHm-pDcvm_AHSf-hEbgag-UAHBsK8yIFpj9Am4KfUM</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Xuelong</creator><creator>Liu, Kang</creator><creator>Dong, Yongsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><orcidid>https://orcid.org/0000-0002-1965-240X</orcidid></search><sort><creationdate>20180901</creationdate><title>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</title><author>Li, Xuelong ; Liu, Kang ; Dong, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fast adaptive trimaps (FATs)</topic><topic>Fats</topic><topic>Feature extraction</topic><topic>foreground extraction</topic><topic>Gravity</topic><topic>Histograms</topic><topic>image analysis</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Optics</topic><topic>superpixel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuelong</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Dong, Yongsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xuelong</au><au>Liu, Kang</au><au>Dong, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>48</volume><issue>9</issue><spage>2609</spage><epage>2619</epage><pages>2609-2619</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28920912</pmid><doi>10.1109/TCYB.2017.2747143</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><orcidid>https://orcid.org/0000-0002-1965-240X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2018-09, Vol.48 (9), p.2609-2619 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_1940188092 |
source | IEEE Electronic Library (IEL) |
subjects | Fast adaptive trimaps (FATs) Fats Feature extraction foreground extraction Gravity Histograms image analysis Image color analysis Image segmentation Optics superpixel |
title | Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superpixel-Based%20Foreground%20Extraction%20With%20Fast%20Adaptive%20Trimaps&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Li,%20Xuelong&rft.date=2018-09-01&rft.volume=48&rft.issue=9&rft.spage=2609&rft.epage=2619&rft.pages=2609-2619&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2747143&rft_dat=%3Cproquest_RIE%3E2117140809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117140809&rft_id=info:pmid/28920912&rft_ieee_id=8031960&rfr_iscdi=true |