Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps

Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2018-09, Vol.48 (9), p.2609-2619
Hauptverfasser: Li, Xuelong, Liu, Kang, Dong, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2619
container_issue 9
container_start_page 2609
container_title IEEE transactions on cybernetics
container_volume 48
creator Li, Xuelong
Liu, Kang
Dong, Yongsheng
description Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.
doi_str_mv 10.1109/TCYB.2017.2747143
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940188092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8031960</ieee_id><sourcerecordid>2117140809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-ABFkwYuXrfnafBzb0qpQ8GBFPIW4mdUtbXdNdqX-e7O09mAuEzLPvEwehC4JHhGC9d1y-jYZUUzkiEouCWcnqE-JUCmlMjs93oXsoWEIKxyPik9anaMeVZpiTWgfjZ_bGnxd7mCdTmwAl8wrDx--arcume0ab_OmrLbJa9l8JnMbmmTsbN2U35AsfbmxdbhAZ4VdBxge6gC9zGfL6UO6eLp_nI4Xac64blInVOaYwgXT2mEGDgqRSU6lzZjkmZPCgQRBuRBccgVYCCicFVjnTgii2ADd7nNrX321EBqzKUMO67XdQtUGQzTHRCmsaURv_qGrqvXbuJ2hhERXOGKRInsq91UIHgpTdz_yP4Zg0yk2nWLTKTYHxXHm-pDcvm_AHSf-hEbgag-UAHBsK8yIFpj9Am4KfUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117140809</pqid></control><display><type>article</type><title>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xuelong ; Liu, Kang ; Dong, Yongsheng</creator><creatorcontrib>Li, Xuelong ; Liu, Kang ; Dong, Yongsheng</creatorcontrib><description>Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2747143</identifier><identifier>PMID: 28920912</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Fast adaptive trimaps (FATs) ; Fats ; Feature extraction ; foreground extraction ; Gravity ; Histograms ; image analysis ; Image color analysis ; Image segmentation ; Optics ; superpixel</subject><ispartof>IEEE transactions on cybernetics, 2018-09, Vol.48 (9), p.2609-2619</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</citedby><cites>FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</cites><orcidid>0000-0003-2924-946X ; 0000-0002-1965-240X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8031960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8031960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28920912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuelong</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Dong, Yongsheng</creatorcontrib><title>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.</description><subject>Fast adaptive trimaps (FATs)</subject><subject>Fats</subject><subject>Feature extraction</subject><subject>foreground extraction</subject><subject>Gravity</subject><subject>Histograms</subject><subject>image analysis</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Optics</subject><subject>superpixel</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-ABFkwYuXrfnafBzb0qpQ8GBFPIW4mdUtbXdNdqX-e7O09mAuEzLPvEwehC4JHhGC9d1y-jYZUUzkiEouCWcnqE-JUCmlMjs93oXsoWEIKxyPik9anaMeVZpiTWgfjZ_bGnxd7mCdTmwAl8wrDx--arcume0ab_OmrLbJa9l8JnMbmmTsbN2U35AsfbmxdbhAZ4VdBxge6gC9zGfL6UO6eLp_nI4Xac64blInVOaYwgXT2mEGDgqRSU6lzZjkmZPCgQRBuRBccgVYCCicFVjnTgii2ADd7nNrX321EBqzKUMO67XdQtUGQzTHRCmsaURv_qGrqvXbuJ2hhERXOGKRInsq91UIHgpTdz_yP4Zg0yk2nWLTKTYHxXHm-pDcvm_AHSf-hEbgag-UAHBsK8yIFpj9Am4KfUM</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Xuelong</creator><creator>Liu, Kang</creator><creator>Dong, Yongsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><orcidid>https://orcid.org/0000-0002-1965-240X</orcidid></search><sort><creationdate>20180901</creationdate><title>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</title><author>Li, Xuelong ; Liu, Kang ; Dong, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d685d380f399d03edef657427a53745d76de7e624664748e066efda609cd66183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fast adaptive trimaps (FATs)</topic><topic>Fats</topic><topic>Feature extraction</topic><topic>foreground extraction</topic><topic>Gravity</topic><topic>Histograms</topic><topic>image analysis</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Optics</topic><topic>superpixel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuelong</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Dong, Yongsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xuelong</au><au>Liu, Kang</au><au>Dong, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>48</volume><issue>9</issue><spage>2609</spage><epage>2619</epage><pages>2609-2619</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28920912</pmid><doi>10.1109/TCYB.2017.2747143</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><orcidid>https://orcid.org/0000-0002-1965-240X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2018-09, Vol.48 (9), p.2609-2619
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_1940188092
source IEEE Electronic Library (IEL)
subjects Fast adaptive trimaps (FATs)
Fats
Feature extraction
foreground extraction
Gravity
Histograms
image analysis
Image color analysis
Image segmentation
Optics
superpixel
title Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superpixel-Based%20Foreground%20Extraction%20With%20Fast%20Adaptive%20Trimaps&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Li,%20Xuelong&rft.date=2018-09-01&rft.volume=48&rft.issue=9&rft.spage=2609&rft.epage=2619&rft.pages=2609-2619&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2747143&rft_dat=%3Cproquest_RIE%3E2117140809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117140809&rft_id=info:pmid/28920912&rft_ieee_id=8031960&rfr_iscdi=true