DNA robots sort as they walk

Multiple DNA robots perform parallel tasks on a self-assembled DNA origami surface DNA nanoscience is the science and engineering of molecular-scale devices composed of DNA. In prior work, DNA devices have been engineered to do nontrivial serial computational and robotic tasks. On page 1112 of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-09, Vol.357 (6356), p.1095-1096
1. Verfasser: Reif, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1096
container_issue 6356
container_start_page 1095
container_title Science (American Association for the Advancement of Science)
container_volume 357
creator Reif, John H.
description Multiple DNA robots perform parallel tasks on a self-assembled DNA origami surface DNA nanoscience is the science and engineering of molecular-scale devices composed of DNA. In prior work, DNA devices have been engineered to do nontrivial serial computational and robotic tasks. On page 1112 of this issue, Thubagere et al. ( 1 ) report an experimental molecular robotic system that makes parallel use of multiple DNA robotic devices to execute a defined task. The results provide evidence that the powerful technique of parallelism, previously used in macro- and micro-robot systems, can be used for molecular robotics.
doi_str_mv 10.1126/science.aao5125
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940049149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399821</jstor_id><sourcerecordid>26399821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5332f1a422725650cf70e6010f2b7e76e75bf06a160d9bd8648bc732b79c605c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUwswCKxMKS9vwdj1X5lCpYYLYc1xEtaV3sRFX_PUYJIDHd8D733ulB6BzDGGMiJtEu3ca6sTGeY8IP0BCD4rkiQA_REICKvADJB-gkxhVAyhQ9RgNSKEwIhSG6uH2eZsGXvolZ9KHJTMyad7fPdqb-OEVHlamjO-vnCL3d373OHvP5y8PTbDrPLWWyyTmlpMKGESIJFxxsJcEJwFCRUjopnORlBcJgAQtVLgrBitJKmkJlBXBLR-im690G_9m62Oj1MlpX12bjfBs1VgyAKcxUQq__oSvfhk36LlGSKVUAg0RNOsoGH2Nwld6G5dqEvcagv8XpXpzuxaWNq763Lddu8cv_mErAZQesYuPDXy5oukkw_QK9c3EF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974998040</pqid></control><display><type>article</type><title>DNA robots sort as they walk</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Reif, John H.</creator><creatorcontrib>Reif, John H.</creatorcontrib><description>Multiple DNA robots perform parallel tasks on a self-assembled DNA origami surface DNA nanoscience is the science and engineering of molecular-scale devices composed of DNA. In prior work, DNA devices have been engineered to do nontrivial serial computational and robotic tasks. On page 1112 of this issue, Thubagere et al. ( 1 ) report an experimental molecular robotic system that makes parallel use of multiple DNA robotic devices to execute a defined task. The results provide evidence that the powerful technique of parallelism, previously used in macro- and micro-robot systems, can be used for molecular robotics.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aao5125</identifier><identifier>PMID: 28912230</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Computer applications ; Deoxyribonucleic acid ; Devices ; DNA ; Microrobots ; Nanotechnology ; PERSPECTIVES ; Robotics</subject><ispartof>Science (American Association for the Advancement of Science), 2017-09, Vol.357 (6356), p.1095-1096</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5332f1a422725650cf70e6010f2b7e76e75bf06a160d9bd8648bc732b79c605c3</citedby><cites>FETCH-LOGICAL-c347t-5332f1a422725650cf70e6010f2b7e76e75bf06a160d9bd8648bc732b79c605c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399821$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399821$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28912230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reif, John H.</creatorcontrib><title>DNA robots sort as they walk</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Multiple DNA robots perform parallel tasks on a self-assembled DNA origami surface DNA nanoscience is the science and engineering of molecular-scale devices composed of DNA. In prior work, DNA devices have been engineered to do nontrivial serial computational and robotic tasks. On page 1112 of this issue, Thubagere et al. ( 1 ) report an experimental molecular robotic system that makes parallel use of multiple DNA robotic devices to execute a defined task. The results provide evidence that the powerful technique of parallelism, previously used in macro- and micro-robot systems, can be used for molecular robotics.</description><subject>Computer applications</subject><subject>Deoxyribonucleic acid</subject><subject>Devices</subject><subject>DNA</subject><subject>Microrobots</subject><subject>Nanotechnology</subject><subject>PERSPECTIVES</subject><subject>Robotics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUwswCKxMKS9vwdj1X5lCpYYLYc1xEtaV3sRFX_PUYJIDHd8D733ulB6BzDGGMiJtEu3ca6sTGeY8IP0BCD4rkiQA_REICKvADJB-gkxhVAyhQ9RgNSKEwIhSG6uH2eZsGXvolZ9KHJTMyad7fPdqb-OEVHlamjO-vnCL3d373OHvP5y8PTbDrPLWWyyTmlpMKGESIJFxxsJcEJwFCRUjopnORlBcJgAQtVLgrBitJKmkJlBXBLR-im690G_9m62Oj1MlpX12bjfBs1VgyAKcxUQq__oSvfhk36LlGSKVUAg0RNOsoGH2Nwld6G5dqEvcagv8XpXpzuxaWNq763Lddu8cv_mErAZQesYuPDXy5oukkw_QK9c3EF</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Reif, John H.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170915</creationdate><title>DNA robots sort as they walk</title><author>Reif, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5332f1a422725650cf70e6010f2b7e76e75bf06a160d9bd8648bc732b79c605c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer applications</topic><topic>Deoxyribonucleic acid</topic><topic>Devices</topic><topic>DNA</topic><topic>Microrobots</topic><topic>Nanotechnology</topic><topic>PERSPECTIVES</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reif, John H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reif, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA robots sort as they walk</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>357</volume><issue>6356</issue><spage>1095</spage><epage>1096</epage><pages>1095-1096</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Multiple DNA robots perform parallel tasks on a self-assembled DNA origami surface DNA nanoscience is the science and engineering of molecular-scale devices composed of DNA. In prior work, DNA devices have been engineered to do nontrivial serial computational and robotic tasks. On page 1112 of this issue, Thubagere et al. ( 1 ) report an experimental molecular robotic system that makes parallel use of multiple DNA robotic devices to execute a defined task. The results provide evidence that the powerful technique of parallelism, previously used in macro- and micro-robot systems, can be used for molecular robotics.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28912230</pmid><doi>10.1126/science.aao5125</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-09, Vol.357 (6356), p.1095-1096
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1940049149
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Computer applications
Deoxyribonucleic acid
Devices
DNA
Microrobots
Nanotechnology
PERSPECTIVES
Robotics
title DNA robots sort as they walk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20robots%20sort%20as%20they%20walk&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Reif,%20John%20H.&rft.date=2017-09-15&rft.volume=357&rft.issue=6356&rft.spage=1095&rft.epage=1096&rft.pages=1095-1096&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aao5125&rft_dat=%3Cjstor_proqu%3E26399821%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974998040&rft_id=info:pmid/28912230&rft_jstor_id=26399821&rfr_iscdi=true