Estimating Sustainable Harvest in Wolverine Populations Using Logistic Regression
Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a...
Gespeichert in:
Veröffentlicht in: | The Journal of wildlife management 2008-07, Vol.72 (5), p.1125-1132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1132 |
---|---|
container_issue | 5 |
container_start_page | 1125 |
container_title | The Journal of wildlife management |
container_volume | 72 |
creator | Dalerum, Fredrik Shults, Brad Kunkel, Kyran |
description | Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a powerful alternative to traditional PVA methods but has received surprisingly limited attention. Logistic regression fits regression equations to binary output from PVA models at a specific point in time to predict probability of a binary response over a range of parameter values. We used logistic regression on output from stochastic population models to evaluate the relative importance of demographic parameters for wolverine (Gulo gulo) populations and to estimate sustainable harvest in a wolverine population in Alaska. Our analysis indicated that adult survival is the most important demographic parameter to reliably estimate in wolverine populations because it had a greater effect on population persistence than did both fecundity and subadult survival. In accordance with this, harvest rate had a greater effect on population persistence than did any of the other harvest- and migration-related variables we tested. Furthermore, a high proportion of harvested females strengthened the effect of harvest. Hypothetical wolverine populations suffered high probabilities of both extinction and population decline over a range of realistic population sizes and harvest regimes. We suggest that harvested wolverine populations must be regarded as sink populations and that source populations in combination with sufficient dispersal corridors must be secured for any wolverine harvest to be sustainable. |
doi_str_mv | 10.2193/2007-336 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19397396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25097664</jstor_id><sourcerecordid>25097664</sourcerecordid><originalsourceid>FETCH-LOGICAL-b4818-197574da8cca03a2773def049ca51af3b46146421b6d2bc49da76127233a71803</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgHxCKF-JNZ76atJduzE2ZH1PHxJuQdtnI7JqZtNP9ezMqE4RdhfA-7-GcB4BTBFsYJeQKQ8hDQtgeaPgvD3GM-D5oQIhxGFH0dgiOnJtDSBCKWQMMu67UC1nqYha8VK6UupBproK-tCvlykAXwdjkK2V1oYIns6xyz5rCBSO3qQzMTPsBWfCsZlY556NjcDCVuVMnv28TjG66r51-OHjs3XauB2FKYxSHKOERpxMZZ5mERGLOyURNIU0yGSE5JSlliDKKUcomOM1oMpGcIcwxIZKjGJImuKjnLq35rPyuYqFdpvJcFspUTvjrE04S5sHzf-DcVLbwuwlMKMYRi7iHLmsos8Y5q6Ziab0XuxYIio1YsRErvFiPtmr0S-dqvZMTd-P7HvKWfeGsLsxdaey2gCOYcMaoz8M69yrV9zaX9kMwTngkxg890X6PO3HUHovh3-WpNqZQuzf9Abm3nCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234225657</pqid></control><display><type>article</type><title>Estimating Sustainable Harvest in Wolverine Populations Using Logistic Regression</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>Dalerum, Fredrik ; Shults, Brad ; Kunkel, Kyran</creator><creatorcontrib>Dalerum, Fredrik ; Shults, Brad ; Kunkel, Kyran</creatorcontrib><description>Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a powerful alternative to traditional PVA methods but has received surprisingly limited attention. Logistic regression fits regression equations to binary output from PVA models at a specific point in time to predict probability of a binary response over a range of parameter values. We used logistic regression on output from stochastic population models to evaluate the relative importance of demographic parameters for wolverine (Gulo gulo) populations and to estimate sustainable harvest in a wolverine population in Alaska. Our analysis indicated that adult survival is the most important demographic parameter to reliably estimate in wolverine populations because it had a greater effect on population persistence than did both fecundity and subadult survival. In accordance with this, harvest rate had a greater effect on population persistence than did any of the other harvest- and migration-related variables we tested. Furthermore, a high proportion of harvested females strengthened the effect of harvest. Hypothetical wolverine populations suffered high probabilities of both extinction and population decline over a range of realistic population sizes and harvest regimes. We suggest that harvested wolverine populations must be regarded as sink populations and that source populations in combination with sufficient dispersal corridors must be secured for any wolverine harvest to be sustainable.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.2193/2007-336</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Oxford, UK: The Wildlife Society</publisher><subject>Age structure ; Animal migration behavior ; Birds ; Carnivores ; Data collection ; Depopulation ; Estimates ; Fecundity ; furbearer ; Gulo gulo ; harvest management ; large carnivore ; linear modeling ; Males ; Mammals ; Management and Conservation ; mustelid ; Population ; Population decline ; Population estimates ; Population parameters ; Population size ; Population structure ; Sensitivity analysis ; Sex ratio ; Stochastic models ; Studies ; Sustainability ; Sustainable harvest ; Wildlife management</subject><ispartof>The Journal of wildlife management, 2008-07, Vol.72 (5), p.1125-1132</ispartof><rights>Copyright 2008 The Wildlife Society</rights><rights>2008 The Wildlife Society</rights><rights>Copyright Allen Press Publishing Services Jul 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b4818-197574da8cca03a2773def049ca51af3b46146421b6d2bc49da76127233a71803</citedby><cites>FETCH-LOGICAL-b4818-197574da8cca03a2773def049ca51af3b46146421b6d2bc49da76127233a71803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25097664$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25097664$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57996,58229</link.rule.ids></links><search><creatorcontrib>Dalerum, Fredrik</creatorcontrib><creatorcontrib>Shults, Brad</creatorcontrib><creatorcontrib>Kunkel, Kyran</creatorcontrib><title>Estimating Sustainable Harvest in Wolverine Populations Using Logistic Regression</title><title>The Journal of wildlife management</title><description>Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a powerful alternative to traditional PVA methods but has received surprisingly limited attention. Logistic regression fits regression equations to binary output from PVA models at a specific point in time to predict probability of a binary response over a range of parameter values. We used logistic regression on output from stochastic population models to evaluate the relative importance of demographic parameters for wolverine (Gulo gulo) populations and to estimate sustainable harvest in a wolverine population in Alaska. Our analysis indicated that adult survival is the most important demographic parameter to reliably estimate in wolverine populations because it had a greater effect on population persistence than did both fecundity and subadult survival. In accordance with this, harvest rate had a greater effect on population persistence than did any of the other harvest- and migration-related variables we tested. Furthermore, a high proportion of harvested females strengthened the effect of harvest. Hypothetical wolverine populations suffered high probabilities of both extinction and population decline over a range of realistic population sizes and harvest regimes. We suggest that harvested wolverine populations must be regarded as sink populations and that source populations in combination with sufficient dispersal corridors must be secured for any wolverine harvest to be sustainable.</description><subject>Age structure</subject><subject>Animal migration behavior</subject><subject>Birds</subject><subject>Carnivores</subject><subject>Data collection</subject><subject>Depopulation</subject><subject>Estimates</subject><subject>Fecundity</subject><subject>furbearer</subject><subject>Gulo gulo</subject><subject>harvest management</subject><subject>large carnivore</subject><subject>linear modeling</subject><subject>Males</subject><subject>Mammals</subject><subject>Management and Conservation</subject><subject>mustelid</subject><subject>Population</subject><subject>Population decline</subject><subject>Population estimates</subject><subject>Population parameters</subject><subject>Population size</subject><subject>Population structure</subject><subject>Sensitivity analysis</subject><subject>Sex ratio</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Sustainability</subject><subject>Sustainable harvest</subject><subject>Wildlife management</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhoMoOKfgHxCKF-JNZ76atJduzE2ZH1PHxJuQdtnI7JqZtNP9ezMqE4RdhfA-7-GcB4BTBFsYJeQKQ8hDQtgeaPgvD3GM-D5oQIhxGFH0dgiOnJtDSBCKWQMMu67UC1nqYha8VK6UupBproK-tCvlykAXwdjkK2V1oYIns6xyz5rCBSO3qQzMTPsBWfCsZlY556NjcDCVuVMnv28TjG66r51-OHjs3XauB2FKYxSHKOERpxMZZ5mERGLOyURNIU0yGSE5JSlliDKKUcomOM1oMpGcIcwxIZKjGJImuKjnLq35rPyuYqFdpvJcFspUTvjrE04S5sHzf-DcVLbwuwlMKMYRi7iHLmsos8Y5q6Ziab0XuxYIio1YsRErvFiPtmr0S-dqvZMTd-P7HvKWfeGsLsxdaey2gCOYcMaoz8M69yrV9zaX9kMwTngkxg890X6PO3HUHovh3-WpNqZQuzf9Abm3nCc</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Dalerum, Fredrik</creator><creator>Shults, Brad</creator><creator>Kunkel, Kyran</creator><general>The Wildlife Society</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>7X2</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>200807</creationdate><title>Estimating Sustainable Harvest in Wolverine Populations Using Logistic Regression</title><author>Dalerum, Fredrik ; Shults, Brad ; Kunkel, Kyran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b4818-197574da8cca03a2773def049ca51af3b46146421b6d2bc49da76127233a71803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Age structure</topic><topic>Animal migration behavior</topic><topic>Birds</topic><topic>Carnivores</topic><topic>Data collection</topic><topic>Depopulation</topic><topic>Estimates</topic><topic>Fecundity</topic><topic>furbearer</topic><topic>Gulo gulo</topic><topic>harvest management</topic><topic>large carnivore</topic><topic>linear modeling</topic><topic>Males</topic><topic>Mammals</topic><topic>Management and Conservation</topic><topic>mustelid</topic><topic>Population</topic><topic>Population decline</topic><topic>Population estimates</topic><topic>Population parameters</topic><topic>Population size</topic><topic>Population structure</topic><topic>Sensitivity analysis</topic><topic>Sex ratio</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Sustainability</topic><topic>Sustainable harvest</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalerum, Fredrik</creatorcontrib><creatorcontrib>Shults, Brad</creatorcontrib><creatorcontrib>Kunkel, Kyran</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalerum, Fredrik</au><au>Shults, Brad</au><au>Kunkel, Kyran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Sustainable Harvest in Wolverine Populations Using Logistic Regression</atitle><jtitle>The Journal of wildlife management</jtitle><date>2008-07</date><risdate>2008</risdate><volume>72</volume><issue>5</issue><spage>1125</spage><epage>1132</epage><pages>1125-1132</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>Population viability analysis (PVA) is a common tool to evaluate population vulnerability. However, most techniques require reliable estimates of underlying population parameters, which are often difficult to obtain and PVA are, therefore, best used in a qualitative context. Logistic regression is a powerful alternative to traditional PVA methods but has received surprisingly limited attention. Logistic regression fits regression equations to binary output from PVA models at a specific point in time to predict probability of a binary response over a range of parameter values. We used logistic regression on output from stochastic population models to evaluate the relative importance of demographic parameters for wolverine (Gulo gulo) populations and to estimate sustainable harvest in a wolverine population in Alaska. Our analysis indicated that adult survival is the most important demographic parameter to reliably estimate in wolverine populations because it had a greater effect on population persistence than did both fecundity and subadult survival. In accordance with this, harvest rate had a greater effect on population persistence than did any of the other harvest- and migration-related variables we tested. Furthermore, a high proportion of harvested females strengthened the effect of harvest. Hypothetical wolverine populations suffered high probabilities of both extinction and population decline over a range of realistic population sizes and harvest regimes. We suggest that harvested wolverine populations must be regarded as sink populations and that source populations in combination with sufficient dispersal corridors must be secured for any wolverine harvest to be sustainable.</abstract><cop>Oxford, UK</cop><pub>The Wildlife Society</pub><doi>10.2193/2007-336</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-541X |
ispartof | The Journal of wildlife management, 2008-07, Vol.72 (5), p.1125-1132 |
issn | 0022-541X 1937-2817 |
language | eng |
recordid | cdi_proquest_miscellaneous_19397396 |
source | Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy |
subjects | Age structure Animal migration behavior Birds Carnivores Data collection Depopulation Estimates Fecundity furbearer Gulo gulo harvest management large carnivore linear modeling Males Mammals Management and Conservation mustelid Population Population decline Population estimates Population parameters Population size Population structure Sensitivity analysis Sex ratio Stochastic models Studies Sustainability Sustainable harvest Wildlife management |
title | Estimating Sustainable Harvest in Wolverine Populations Using Logistic Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Sustainable%20Harvest%20in%20Wolverine%20Populations%20Using%20Logistic%20Regression&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=Dalerum,%20Fredrik&rft.date=2008-07&rft.volume=72&rft.issue=5&rft.spage=1125&rft.epage=1132&rft.pages=1125-1132&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.2193/2007-336&rft_dat=%3Cjstor_proqu%3E25097664%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234225657&rft_id=info:pmid/&rft_jstor_id=25097664&rfr_iscdi=true |