Mapping seabed biotopes at two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground discrimination systems

Spatial surveys of marine benthic habitats and biota based on the interpretation of acoustic data were carried out at two sites in the eastern English Channel each representing different scales of geographic area and intensity of survey. A small area (4×12 km) crossing the Hastings Shingle Bank was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Marine Biological Association of the United Kingdom 2004-06, Vol.84 (3), p.489-500
Hauptverfasser: Foster-Smith, Robert L., Brown, Craig J., Meadows, William J., White, William H., Limpenny, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 3
container_start_page 489
container_title Journal of the Marine Biological Association of the United Kingdom
container_volume 84
creator Foster-Smith, Robert L.
Brown, Craig J.
Meadows, William J.
White, William H.
Limpenny, David S.
description Spatial surveys of marine benthic habitats and biota based on the interpretation of acoustic data were carried out at two sites in the eastern English Channel each representing different scales of geographic area and intensity of survey. A small area (4×12 km) crossing the Hastings Shingle Bank was surveyed at a relatively high intensity (track spacing 400 m) and was nested within a larger area between Hastings and Dungeness (12×40 km), which was surveyed at a lower intensity (track spacing 2 km). Surveys were conducted with two acoustic ground discrimination systems (AGDS), RoxAnn and QTC-VIEW and the primary purpose of the investigation was to compare the performance of the two AGDS using a common approach to analysis of the different data outputs (E1 and E2 for RoxAnn and the Q eigenvectors from QTC-VIEW). Exploratory data analysis using variography indicated that interpolation between tracks was justified for the smaller site to create a complete coverage, but was limited to the creation of a digital image of the track data for the larger area. Grab and video sample data were available for supervised classification of the AGDS data and interpreted sidescan images for comparison with unsupervised classification. Both AGDS gave similar outputs, although RoxAnn consistently gave slightly better levels of performance than QTC-VIEW as measured using error matrices. Although the investigation was not designed to compare the performance of AGDS and sidescan, the outputs from AGDS were similar to the visual interpretation of the sidescan sonar data. It was concluded that despite the inherent limitations of AGDS, they may be suitable for providing distribution maps at a broad scale that can give a context for the interpretation of finer scale survey of smaller, nested areas.
doi_str_mv 10.1017/S0025315404009506h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19395760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0025315404009506h</cupid><sourcerecordid>18065895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-27b68567a5e9e94bb69aa338f00acba4c85c63a413ad6eee2ba8ea6bc68b85ef3</originalsourceid><addsrcrecordid>eNqFkd1u1DAQhSMEEkvhBbiykOAui5P4L5doW5ZCEX9FXFoTZ7LrkrWD7RXtS_DMOOyKSiDBlSXPN0dnzimKxxVdVrSSzz9RWvOm4owySltOxfZOsaiYaEspRXu3WMzzcgbuFw9ivKKUVkKqRfHjLUyTdRsSETrsSWd98hNGAomk757ECZKFkUQDY_61jqQtEoSYMDhy5jajjVuy2oJzOC7JewiJ1Euy8rsJgo3eET_8EgLj9zFZQzbB711PehtNsDvrsn6m4k1W3MWHxb0BxoiPju9J8fnl2eXqVXnxbn2-enFRGsZkKmvZCcWFBI4ttqzrRAvQNGqgFEwHzChuRAOsaqAXiFh3oBBEZ4TqFMehOSmeHXSn4L_tMSa9y35wHMFh9qmrtmm5FPT_oKKCq5Zn8Mkf4JXfB5eP0HXNcvCSywzVB8gEH2PAQU85Awg3uqJ6LlL_XWReenpUhrmFIYAzNt5ucsW5amar5YGzOcrr33MIX7WQjeRarD_oy_VH_ub1l1N9mnl2NAO7Lth-g7eW_2HnJ-auvqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224154757</pqid></control><display><type>article</type><title>Mapping seabed biotopes at two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground discrimination systems</title><source>Cambridge University Press Journals Complete</source><creator>Foster-Smith, Robert L. ; Brown, Craig J. ; Meadows, William J. ; White, William H. ; Limpenny, David S.</creator><creatorcontrib>Foster-Smith, Robert L. ; Brown, Craig J. ; Meadows, William J. ; White, William H. ; Limpenny, David S.</creatorcontrib><description>Spatial surveys of marine benthic habitats and biota based on the interpretation of acoustic data were carried out at two sites in the eastern English Channel each representing different scales of geographic area and intensity of survey. A small area (4×12 km) crossing the Hastings Shingle Bank was surveyed at a relatively high intensity (track spacing 400 m) and was nested within a larger area between Hastings and Dungeness (12×40 km), which was surveyed at a lower intensity (track spacing 2 km). Surveys were conducted with two acoustic ground discrimination systems (AGDS), RoxAnn and QTC-VIEW and the primary purpose of the investigation was to compare the performance of the two AGDS using a common approach to analysis of the different data outputs (E1 and E2 for RoxAnn and the Q eigenvectors from QTC-VIEW). Exploratory data analysis using variography indicated that interpolation between tracks was justified for the smaller site to create a complete coverage, but was limited to the creation of a digital image of the track data for the larger area. Grab and video sample data were available for supervised classification of the AGDS data and interpreted sidescan images for comparison with unsupervised classification. Both AGDS gave similar outputs, although RoxAnn consistently gave slightly better levels of performance than QTC-VIEW as measured using error matrices. Although the investigation was not designed to compare the performance of AGDS and sidescan, the outputs from AGDS were similar to the visual interpretation of the sidescan sonar data. It was concluded that despite the inherent limitations of AGDS, they may be suitable for providing distribution maps at a broad scale that can give a context for the interpretation of finer scale survey of smaller, nested areas.</description><identifier>ISSN: 0025-3154</identifier><identifier>EISSN: 1469-7769</identifier><identifier>DOI: 10.1017/S0025315404009506h</identifier><identifier>CODEN: JMBAAK</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustics ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biota ; Biotopes ; Eigenvectors ; Fisheries ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Habitats ; Marine ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Ocean floor ; Polls &amp; surveys ; Research Article ; Sea water ecosystems ; Sediments ; Software ; Synecology</subject><ispartof>Journal of the Marine Biological Association of the United Kingdom, 2004-06, Vol.84 (3), p.489-500</ispartof><rights>2004 Marine Biological Association of the United Kingdom</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-27b68567a5e9e94bb69aa338f00acba4c85c63a413ad6eee2ba8ea6bc68b85ef3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0025315404009506/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27906,27907,55610</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15855830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foster-Smith, Robert L.</creatorcontrib><creatorcontrib>Brown, Craig J.</creatorcontrib><creatorcontrib>Meadows, William J.</creatorcontrib><creatorcontrib>White, William H.</creatorcontrib><creatorcontrib>Limpenny, David S.</creatorcontrib><title>Mapping seabed biotopes at two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground discrimination systems</title><title>Journal of the Marine Biological Association of the United Kingdom</title><addtitle>J. Mar. Biol. Ass</addtitle><description>Spatial surveys of marine benthic habitats and biota based on the interpretation of acoustic data were carried out at two sites in the eastern English Channel each representing different scales of geographic area and intensity of survey. A small area (4×12 km) crossing the Hastings Shingle Bank was surveyed at a relatively high intensity (track spacing 400 m) and was nested within a larger area between Hastings and Dungeness (12×40 km), which was surveyed at a lower intensity (track spacing 2 km). Surveys were conducted with two acoustic ground discrimination systems (AGDS), RoxAnn and QTC-VIEW and the primary purpose of the investigation was to compare the performance of the two AGDS using a common approach to analysis of the different data outputs (E1 and E2 for RoxAnn and the Q eigenvectors from QTC-VIEW). Exploratory data analysis using variography indicated that interpolation between tracks was justified for the smaller site to create a complete coverage, but was limited to the creation of a digital image of the track data for the larger area. Grab and video sample data were available for supervised classification of the AGDS data and interpreted sidescan images for comparison with unsupervised classification. Both AGDS gave similar outputs, although RoxAnn consistently gave slightly better levels of performance than QTC-VIEW as measured using error matrices. Although the investigation was not designed to compare the performance of AGDS and sidescan, the outputs from AGDS were similar to the visual interpretation of the sidescan sonar data. It was concluded that despite the inherent limitations of AGDS, they may be suitable for providing distribution maps at a broad scale that can give a context for the interpretation of finer scale survey of smaller, nested areas.</description><subject>Acoustics</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biota</subject><subject>Biotopes</subject><subject>Eigenvectors</subject><subject>Fisheries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Habitats</subject><subject>Marine</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Ocean floor</subject><subject>Polls &amp; surveys</subject><subject>Research Article</subject><subject>Sea water ecosystems</subject><subject>Sediments</subject><subject>Software</subject><subject>Synecology</subject><issn>0025-3154</issn><issn>1469-7769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkd1u1DAQhSMEEkvhBbiykOAui5P4L5doW5ZCEX9FXFoTZ7LrkrWD7RXtS_DMOOyKSiDBlSXPN0dnzimKxxVdVrSSzz9RWvOm4owySltOxfZOsaiYaEspRXu3WMzzcgbuFw9ivKKUVkKqRfHjLUyTdRsSETrsSWd98hNGAomk757ECZKFkUQDY_61jqQtEoSYMDhy5jajjVuy2oJzOC7JewiJ1Euy8rsJgo3eET_8EgLj9zFZQzbB711PehtNsDvrsn6m4k1W3MWHxb0BxoiPju9J8fnl2eXqVXnxbn2-enFRGsZkKmvZCcWFBI4ttqzrRAvQNGqgFEwHzChuRAOsaqAXiFh3oBBEZ4TqFMehOSmeHXSn4L_tMSa9y35wHMFh9qmrtmm5FPT_oKKCq5Zn8Mkf4JXfB5eP0HXNcvCSywzVB8gEH2PAQU85Awg3uqJ6LlL_XWReenpUhrmFIYAzNt5ucsW5amar5YGzOcrr33MIX7WQjeRarD_oy_VH_ub1l1N9mnl2NAO7Lth-g7eW_2HnJ-auvqE</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Foster-Smith, Robert L.</creator><creator>Brown, Craig J.</creator><creator>Meadows, William J.</creator><creator>White, William H.</creator><creator>Limpenny, David S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>88A</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20040601</creationdate><title>Mapping seabed biotopes at two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground discrimination systems</title><author>Foster-Smith, Robert L. ; Brown, Craig J. ; Meadows, William J. ; White, William H. ; Limpenny, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-27b68567a5e9e94bb69aa338f00acba4c85c63a413ad6eee2ba8ea6bc68b85ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustics</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biota</topic><topic>Biotopes</topic><topic>Eigenvectors</topic><topic>Fisheries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Habitats</topic><topic>Marine</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Ocean floor</topic><topic>Polls &amp; surveys</topic><topic>Research Article</topic><topic>Sea water ecosystems</topic><topic>Sediments</topic><topic>Software</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foster-Smith, Robert L.</creatorcontrib><creatorcontrib>Brown, Craig J.</creatorcontrib><creatorcontrib>Meadows, William J.</creatorcontrib><creatorcontrib>White, William H.</creatorcontrib><creatorcontrib>Limpenny, David S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of the Marine Biological Association of the United Kingdom</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foster-Smith, Robert L.</au><au>Brown, Craig J.</au><au>Meadows, William J.</au><au>White, William H.</au><au>Limpenny, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping seabed biotopes at two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground discrimination systems</atitle><jtitle>Journal of the Marine Biological Association of the United Kingdom</jtitle><addtitle>J. Mar. Biol. Ass</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>84</volume><issue>3</issue><spage>489</spage><epage>500</epage><pages>489-500</pages><issn>0025-3154</issn><eissn>1469-7769</eissn><coden>JMBAAK</coden><abstract>Spatial surveys of marine benthic habitats and biota based on the interpretation of acoustic data were carried out at two sites in the eastern English Channel each representing different scales of geographic area and intensity of survey. A small area (4×12 km) crossing the Hastings Shingle Bank was surveyed at a relatively high intensity (track spacing 400 m) and was nested within a larger area between Hastings and Dungeness (12×40 km), which was surveyed at a lower intensity (track spacing 2 km). Surveys were conducted with two acoustic ground discrimination systems (AGDS), RoxAnn and QTC-VIEW and the primary purpose of the investigation was to compare the performance of the two AGDS using a common approach to analysis of the different data outputs (E1 and E2 for RoxAnn and the Q eigenvectors from QTC-VIEW). Exploratory data analysis using variography indicated that interpolation between tracks was justified for the smaller site to create a complete coverage, but was limited to the creation of a digital image of the track data for the larger area. Grab and video sample data were available for supervised classification of the AGDS data and interpreted sidescan images for comparison with unsupervised classification. Both AGDS gave similar outputs, although RoxAnn consistently gave slightly better levels of performance than QTC-VIEW as measured using error matrices. Although the investigation was not designed to compare the performance of AGDS and sidescan, the outputs from AGDS were similar to the visual interpretation of the sidescan sonar data. It was concluded that despite the inherent limitations of AGDS, they may be suitable for providing distribution maps at a broad scale that can give a context for the interpretation of finer scale survey of smaller, nested areas.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0025315404009506h</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-3154
ispartof Journal of the Marine Biological Association of the United Kingdom, 2004-06, Vol.84 (3), p.489-500
issn 0025-3154
1469-7769
language eng
recordid cdi_proquest_miscellaneous_19395760
source Cambridge University Press Journals Complete
subjects Acoustics
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Biota
Biotopes
Eigenvectors
Fisheries
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Habitats
Marine
Methods and techniques (sampling, tagging, trapping, modelling...)
Ocean floor
Polls & surveys
Research Article
Sea water ecosystems
Sediments
Software
Synecology
title Mapping seabed biotopes at two spatial scales in the eastern English Channel. Part 2. Comparison of two acoustic ground discrimination systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20seabed%20biotopes%20at%20two%20spatial%20scales%20in%20the%20eastern%20English%20Channel.%20Part%202.%20Comparison%20of%20two%20acoustic%20ground%20discrimination%20systems&rft.jtitle=Journal%20of%20the%20Marine%20Biological%20Association%20of%20the%20United%20Kingdom&rft.au=Foster-Smith,%20Robert%20L.&rft.date=2004-06-01&rft.volume=84&rft.issue=3&rft.spage=489&rft.epage=500&rft.pages=489-500&rft.issn=0025-3154&rft.eissn=1469-7769&rft.coden=JMBAAK&rft_id=info:doi/10.1017/S0025315404009506h&rft_dat=%3Cproquest_cross%3E18065895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224154757&rft_id=info:pmid/&rft_cupid=10_1017_S0025315404009506h&rfr_iscdi=true