Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water
This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Atmospheric and oceanic physics 2008-08, Vol.44 (4), p.507-516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | 4 |
container_start_page | 507 |
container_title | Izvestiya. Atmospheric and oceanic physics |
container_volume | 44 |
creator | Bocharov, A. A. Khabakhpashev, G. A. Tsvelodub, O. Yu |
description | This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths. |
doi_str_mv | 10.1134/S0001433808040117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19382783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19382783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-5f1757f6a88372a6abba44adf952864c8b1768b1e81a33f03ca9599cc87f3db83</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7-AG_Bg7dqPvqRHkX8AtGDCt7KNJ2sXbrNbpK67D_x55q6gqB4yWTmfd6XgSHkmLMzzmV6_sQY46mUiimWMs6LHTLhWZYluVCvu2Qyysmo75MD7-eM5SJlxYR8PAwLdK2GjnrbDaG1PbWGhjekuBpg7D011lG_jE2kett3bY8QJwGh2SQ-QEAaHLxjFGZ0HT-expgxwzhE6gdnQI9DQ9_sws6wRzt4Cn1Dw9omHWzQ0do27ZZZx0B3SPYMdB6PvuuUvFxfPV_eJvePN3eXF_eJFqUKSWZ4kRUmB6VkISCHuoY0hcaUmVB5qlXNizw-qDhIaZjUUGZlqbUqjGxqJafkdJu7dHY1oA_VovUauw6-lqx4KZUolIzgyS9wbgfXx90qwSUTIivTCPEtpJ313qGplq5dgNtUnFXjoao_h4oesfX4yPYzdD_B_5s-AQpul8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213022594</pqid></control><display><type>article</type><title>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</title><source>SpringerNature Journals</source><creator>Bocharov, A. A. ; Khabakhpashev, G. A. ; Tsvelodub, O. Yu</creator><creatorcontrib>Bocharov, A. A. ; Khabakhpashev, G. A. ; Tsvelodub, O. Yu</creatorcontrib><description>This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433808040117</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Climatology ; Earth and Environmental Science ; Earth Sciences ; Free surfaces ; Geophysics/Geodesy ; Marine</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2008-08, Vol.44 (4), p.507-516</ispartof><rights>Pleiades Publishing, Ltd. 2007</rights><rights>Pleiades Publishing, Ltd. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-5f1757f6a88372a6abba44adf952864c8b1768b1e81a33f03ca9599cc87f3db83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001433808040117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001433808040117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bocharov, A. A.</creatorcontrib><creatorcontrib>Khabakhpashev, G. A.</creatorcontrib><creatorcontrib>Tsvelodub, O. Yu</creatorcontrib><title>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.</description><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Free surfaces</subject><subject>Geophysics/Geodesy</subject><subject>Marine</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LxDAQhoMouK7-AG_Bg7dqPvqRHkX8AtGDCt7KNJ2sXbrNbpK67D_x55q6gqB4yWTmfd6XgSHkmLMzzmV6_sQY46mUiimWMs6LHTLhWZYluVCvu2Qyysmo75MD7-eM5SJlxYR8PAwLdK2GjnrbDaG1PbWGhjekuBpg7D011lG_jE2kett3bY8QJwGh2SQ-QEAaHLxjFGZ0HT-expgxwzhE6gdnQI9DQ9_sws6wRzt4Cn1Dw9omHWzQ0do27ZZZx0B3SPYMdB6PvuuUvFxfPV_eJvePN3eXF_eJFqUKSWZ4kRUmB6VkISCHuoY0hcaUmVB5qlXNizw-qDhIaZjUUGZlqbUqjGxqJafkdJu7dHY1oA_VovUauw6-lqx4KZUolIzgyS9wbgfXx90qwSUTIivTCPEtpJ313qGplq5dgNtUnFXjoao_h4oesfX4yPYzdD_B_5s-AQpul8w</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Bocharov, A. A.</creator><creator>Khabakhpashev, G. A.</creator><creator>Tsvelodub, O. Yu</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080801</creationdate><title>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</title><author>Bocharov, A. A. ; Khabakhpashev, G. A. ; Tsvelodub, O. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-5f1757f6a88372a6abba44adf952864c8b1768b1e81a33f03ca9599cc87f3db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Free surfaces</topic><topic>Geophysics/Geodesy</topic><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bocharov, A. A.</creatorcontrib><creatorcontrib>Khabakhpashev, G. A.</creatorcontrib><creatorcontrib>Tsvelodub, O. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bocharov, A. A.</au><au>Khabakhpashev, G. A.</au><au>Tsvelodub, O. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>44</volume><issue>4</issue><spage>507</spage><epage>516</epage><pages>507-516</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0001433808040117</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4338 |
ispartof | Izvestiya. Atmospheric and oceanic physics, 2008-08, Vol.44 (4), p.507-516 |
issn | 0001-4338 1555-628X |
language | eng |
recordid | cdi_proquest_miscellaneous_19382783 |
source | SpringerNature Journals |
subjects | Climatology Earth and Environmental Science Earth Sciences Free surfaces Geophysics/Geodesy Marine |
title | Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20equations%20for%20spatial%20nonlinear%20steady-state%20traveling%20waves%20on%20the%20free%20surfaces%20of%20homogeneous%20and%20two-layer%20bodies%20of%20water&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Bocharov,%20A.%20A.&rft.date=2008-08-01&rft.volume=44&rft.issue=4&rft.spage=507&rft.epage=516&rft.pages=507-516&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433808040117&rft_dat=%3Cproquest_cross%3E19382783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213022594&rft_id=info:pmid/&rfr_iscdi=true |