Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water

This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Atmospheric and oceanic physics 2008-08, Vol.44 (4), p.507-516
Hauptverfasser: Bocharov, A. A., Khabakhpashev, G. A., Tsvelodub, O. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 4
container_start_page 507
container_title Izvestiya. Atmospheric and oceanic physics
container_volume 44
creator Bocharov, A. A.
Khabakhpashev, G. A.
Tsvelodub, O. Yu
description This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.
doi_str_mv 10.1134/S0001433808040117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19382783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19382783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-5f1757f6a88372a6abba44adf952864c8b1768b1e81a33f03ca9599cc87f3db83</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouK7-AG_Bg7dqPvqRHkX8AtGDCt7KNJ2sXbrNbpK67D_x55q6gqB4yWTmfd6XgSHkmLMzzmV6_sQY46mUiimWMs6LHTLhWZYluVCvu2Qyysmo75MD7-eM5SJlxYR8PAwLdK2GjnrbDaG1PbWGhjekuBpg7D011lG_jE2kett3bY8QJwGh2SQ-QEAaHLxjFGZ0HT-expgxwzhE6gdnQI9DQ9_sws6wRzt4Cn1Dw9omHWzQ0do27ZZZx0B3SPYMdB6PvuuUvFxfPV_eJvePN3eXF_eJFqUKSWZ4kRUmB6VkISCHuoY0hcaUmVB5qlXNizw-qDhIaZjUUGZlqbUqjGxqJafkdJu7dHY1oA_VovUauw6-lqx4KZUolIzgyS9wbgfXx90qwSUTIivTCPEtpJ313qGplq5dgNtUnFXjoao_h4oesfX4yPYzdD_B_5s-AQpul8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213022594</pqid></control><display><type>article</type><title>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</title><source>SpringerNature Journals</source><creator>Bocharov, A. A. ; Khabakhpashev, G. A. ; Tsvelodub, O. Yu</creator><creatorcontrib>Bocharov, A. A. ; Khabakhpashev, G. A. ; Tsvelodub, O. Yu</creatorcontrib><description>This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433808040117</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Climatology ; Earth and Environmental Science ; Earth Sciences ; Free surfaces ; Geophysics/Geodesy ; Marine</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2008-08, Vol.44 (4), p.507-516</ispartof><rights>Pleiades Publishing, Ltd. 2007</rights><rights>Pleiades Publishing, Ltd. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-5f1757f6a88372a6abba44adf952864c8b1768b1e81a33f03ca9599cc87f3db83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001433808040117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001433808040117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bocharov, A. A.</creatorcontrib><creatorcontrib>Khabakhpashev, G. A.</creatorcontrib><creatorcontrib>Tsvelodub, O. Yu</creatorcontrib><title>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.</description><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Free surfaces</subject><subject>Geophysics/Geodesy</subject><subject>Marine</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LxDAQhoMouK7-AG_Bg7dqPvqRHkX8AtGDCt7KNJ2sXbrNbpK67D_x55q6gqB4yWTmfd6XgSHkmLMzzmV6_sQY46mUiimWMs6LHTLhWZYluVCvu2Qyysmo75MD7-eM5SJlxYR8PAwLdK2GjnrbDaG1PbWGhjekuBpg7D011lG_jE2kett3bY8QJwGh2SQ-QEAaHLxjFGZ0HT-expgxwzhE6gdnQI9DQ9_sws6wRzt4Cn1Dw9omHWzQ0do27ZZZx0B3SPYMdB6PvuuUvFxfPV_eJvePN3eXF_eJFqUKSWZ4kRUmB6VkISCHuoY0hcaUmVB5qlXNizw-qDhIaZjUUGZlqbUqjGxqJafkdJu7dHY1oA_VovUauw6-lqx4KZUolIzgyS9wbgfXx90qwSUTIivTCPEtpJ313qGplq5dgNtUnFXjoao_h4oesfX4yPYzdD_B_5s-AQpul8w</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Bocharov, A. A.</creator><creator>Khabakhpashev, G. A.</creator><creator>Tsvelodub, O. Yu</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080801</creationdate><title>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</title><author>Bocharov, A. A. ; Khabakhpashev, G. A. ; Tsvelodub, O. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-5f1757f6a88372a6abba44adf952864c8b1768b1e81a33f03ca9599cc87f3db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Free surfaces</topic><topic>Geophysics/Geodesy</topic><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bocharov, A. A.</creatorcontrib><creatorcontrib>Khabakhpashev, G. A.</creatorcontrib><creatorcontrib>Tsvelodub, O. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bocharov, A. A.</au><au>Khabakhpashev, G. A.</au><au>Tsvelodub, O. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>44</volume><issue>4</issue><spage>507</spage><epage>516</epage><pages>507-516</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0001433808040117</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4338
ispartof Izvestiya. Atmospheric and oceanic physics, 2008-08, Vol.44 (4), p.507-516
issn 0001-4338
1555-628X
language eng
recordid cdi_proquest_miscellaneous_19382783
source SpringerNature Journals
subjects Climatology
Earth and Environmental Science
Earth Sciences
Free surfaces
Geophysics/Geodesy
Marine
title Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20equations%20for%20spatial%20nonlinear%20steady-state%20traveling%20waves%20on%20the%20free%20surfaces%20of%20homogeneous%20and%20two-layer%20bodies%20of%20water&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Bocharov,%20A.%20A.&rft.date=2008-08-01&rft.volume=44&rft.issue=4&rft.spage=507&rft.epage=516&rft.pages=507-516&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433808040117&rft_dat=%3Cproquest_cross%3E19382783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213022594&rft_id=info:pmid/&rfr_iscdi=true