Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface

Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-12, Vol.280 (48), p.40051-40057
Hauptverfasser: Svedružić, Željko M., Wang, Chenbo, Kosmoski, Joseph V., Smerdon, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40057
container_issue 48
container_start_page 40051
container_title The Journal of biological chemistry
container_volume 280
creator Svedružić, Željko M.
Wang, Chenbo
Kosmoski, Joseph V.
Smerdon, Michael J.
description Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.
doi_str_mv 10.1074/jbc.M509478200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19378928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819481349</els_id><sourcerecordid>19378928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</originalsourceid><addsrcrecordid>eNp1kDtvFDEUhS0EIkugpUQuEN0s1_Y87HKV8JJCQAlBdJbHvpNxNDNebA-If4_DrpSK29zmO0dHHyEvGWwZdPXbu95uPzeg6k5ygEdkw0CKSjTsx2OyAeCsUryRJ-RZSndQrlbsKTlhLWcgGN-QsLM2zHNwJvuwULM4eoV74yMNAzX05jv9OoYc9jG41WbqF3p-uaMm03M_DBhxyfQq5H9hM9FrzNkvt4mWqjwivVzthCGFGen1Ggdj8Tl5Mpgp4YvjPyU37999O_tYXXz58Olsd1HZBmSuagVCiU7dD-6laQx2Ulnsm1YKoVquWtWzmnUc6mYAJ3ourWgdZ473YBHEKXlz6C3Lf66Ysp59sjhNZsGwJs1Ku1RcFnB7AG0MKUUc9D762cQ_moG-V6yLYv2guAReHZvXfkb3gB-dFuD1ARj97fjbR9S9D3bEWXMJupa6BmhYweQBw6Lhl8eok_W4WHQlYrN2wf9vwl9MCZSl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19378928</pqid></control><display><type>article</type><title>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Svedružić, Željko M. ; Wang, Chenbo ; Kosmoski, Joseph V. ; Smerdon, Michael J.</creator><creatorcontrib>Svedružić, Željko M. ; Wang, Chenbo ; Kosmoski, Joseph V. ; Smerdon, Michael J.</creatorcontrib><description>Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M509478200</identifier><identifier>PMID: 16210312</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Binding, Competitive ; Cell Nucleus - metabolism ; Chromatin - chemistry ; Dimerization ; DNA - chemistry ; DNA Damage ; DNA Repair ; Histones - chemistry ; Hydroxyl Radical ; Models, Molecular ; Nucleic Acid Conformation ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Oocytes - metabolism ; Protein Conformation ; Pyrimidine Dimers - chemistry ; Thermodynamics ; Time Factors ; Ultraviolet Rays ; Xenopus ; Xenopus laevis</subject><ispartof>The Journal of biological chemistry, 2005-12, Vol.280 (48), p.40051-40057</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</citedby><cites>FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16210312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svedružić, Željko M.</creatorcontrib><creatorcontrib>Wang, Chenbo</creatorcontrib><creatorcontrib>Kosmoski, Joseph V.</creatorcontrib><creatorcontrib>Smerdon, Michael J.</creatorcontrib><title>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.</description><subject>Animals</subject><subject>Binding, Competitive</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin - chemistry</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Histones - chemistry</subject><subject>Hydroxyl Radical</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Protein Conformation</subject><subject>Pyrimidine Dimers - chemistry</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtvFDEUhS0EIkugpUQuEN0s1_Y87HKV8JJCQAlBdJbHvpNxNDNebA-If4_DrpSK29zmO0dHHyEvGWwZdPXbu95uPzeg6k5ygEdkw0CKSjTsx2OyAeCsUryRJ-RZSndQrlbsKTlhLWcgGN-QsLM2zHNwJvuwULM4eoV74yMNAzX05jv9OoYc9jG41WbqF3p-uaMm03M_DBhxyfQq5H9hM9FrzNkvt4mWqjwivVzthCGFGen1Ggdj8Tl5Mpgp4YvjPyU37999O_tYXXz58Olsd1HZBmSuagVCiU7dD-6laQx2Ulnsm1YKoVquWtWzmnUc6mYAJ3ourWgdZ473YBHEKXlz6C3Lf66Ysp59sjhNZsGwJs1Ku1RcFnB7AG0MKUUc9D762cQ_moG-V6yLYv2guAReHZvXfkb3gB-dFuD1ARj97fjbR9S9D3bEWXMJupa6BmhYweQBw6Lhl8eok_W4WHQlYrN2wf9vwl9MCZSl</recordid><startdate>20051202</startdate><enddate>20051202</enddate><creator>Svedružić, Željko M.</creator><creator>Wang, Chenbo</creator><creator>Kosmoski, Joseph V.</creator><creator>Smerdon, Michael J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20051202</creationdate><title>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</title><author>Svedružić, Željko M. ; Wang, Chenbo ; Kosmoski, Joseph V. ; Smerdon, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Binding, Competitive</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin - chemistry</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Histones - chemistry</topic><topic>Hydroxyl Radical</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Protein Conformation</topic><topic>Pyrimidine Dimers - chemistry</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svedružić, Željko M.</creatorcontrib><creatorcontrib>Wang, Chenbo</creatorcontrib><creatorcontrib>Kosmoski, Joseph V.</creatorcontrib><creatorcontrib>Smerdon, Michael J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svedružić, Željko M.</au><au>Wang, Chenbo</au><au>Kosmoski, Joseph V.</au><au>Smerdon, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-12-02</date><risdate>2005</risdate><volume>280</volume><issue>48</issue><spage>40051</spage><epage>40057</epage><pages>40051-40057</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16210312</pmid><doi>10.1074/jbc.M509478200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2005-12, Vol.280 (48), p.40051-40057
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_19378928
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Binding, Competitive
Cell Nucleus - metabolism
Chromatin - chemistry
Dimerization
DNA - chemistry
DNA Damage
DNA Repair
Histones - chemistry
Hydroxyl Radical
Models, Molecular
Nucleic Acid Conformation
Nucleosomes - chemistry
Nucleosomes - metabolism
Oocytes - metabolism
Protein Conformation
Pyrimidine Dimers - chemistry
Thermodynamics
Time Factors
Ultraviolet Rays
Xenopus
Xenopus laevis
title Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accommodation%20and%20Repair%20of%20a%20UV%20Photoproduct%20in%20DNA%20at%20Different%20Rotational%20Settings%20on%20the%20Nucleosome%20Surface&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Svedru%C5%BEi%C4%87,%20%C5%BDeljko%20M.&rft.date=2005-12-02&rft.volume=280&rft.issue=48&rft.spage=40051&rft.epage=40057&rft.pages=40051-40057&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M509478200&rft_dat=%3Cproquest_cross%3E19378928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19378928&rft_id=info:pmid/16210312&rft_els_id=S0021925819481349&rfr_iscdi=true