Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface
Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-12, Vol.280 (48), p.40051-40057 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40057 |
---|---|
container_issue | 48 |
container_start_page | 40051 |
container_title | The Journal of biological chemistry |
container_volume | 280 |
creator | Svedružić, Željko M. Wang, Chenbo Kosmoski, Joseph V. Smerdon, Michael J. |
description | Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes. |
doi_str_mv | 10.1074/jbc.M509478200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19378928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819481349</els_id><sourcerecordid>19378928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</originalsourceid><addsrcrecordid>eNp1kDtvFDEUhS0EIkugpUQuEN0s1_Y87HKV8JJCQAlBdJbHvpNxNDNebA-If4_DrpSK29zmO0dHHyEvGWwZdPXbu95uPzeg6k5ygEdkw0CKSjTsx2OyAeCsUryRJ-RZSndQrlbsKTlhLWcgGN-QsLM2zHNwJvuwULM4eoV74yMNAzX05jv9OoYc9jG41WbqF3p-uaMm03M_DBhxyfQq5H9hM9FrzNkvt4mWqjwivVzthCGFGen1Ggdj8Tl5Mpgp4YvjPyU37999O_tYXXz58Olsd1HZBmSuagVCiU7dD-6laQx2Ulnsm1YKoVquWtWzmnUc6mYAJ3ourWgdZ473YBHEKXlz6C3Lf66Ysp59sjhNZsGwJs1Ku1RcFnB7AG0MKUUc9D762cQ_moG-V6yLYv2guAReHZvXfkb3gB-dFuD1ARj97fjbR9S9D3bEWXMJupa6BmhYweQBw6Lhl8eok_W4WHQlYrN2wf9vwl9MCZSl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19378928</pqid></control><display><type>article</type><title>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Svedružić, Željko M. ; Wang, Chenbo ; Kosmoski, Joseph V. ; Smerdon, Michael J.</creator><creatorcontrib>Svedružić, Željko M. ; Wang, Chenbo ; Kosmoski, Joseph V. ; Smerdon, Michael J.</creatorcontrib><description>Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M509478200</identifier><identifier>PMID: 16210312</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Binding, Competitive ; Cell Nucleus - metabolism ; Chromatin - chemistry ; Dimerization ; DNA - chemistry ; DNA Damage ; DNA Repair ; Histones - chemistry ; Hydroxyl Radical ; Models, Molecular ; Nucleic Acid Conformation ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Oocytes - metabolism ; Protein Conformation ; Pyrimidine Dimers - chemistry ; Thermodynamics ; Time Factors ; Ultraviolet Rays ; Xenopus ; Xenopus laevis</subject><ispartof>The Journal of biological chemistry, 2005-12, Vol.280 (48), p.40051-40057</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</citedby><cites>FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16210312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svedružić, Željko M.</creatorcontrib><creatorcontrib>Wang, Chenbo</creatorcontrib><creatorcontrib>Kosmoski, Joseph V.</creatorcontrib><creatorcontrib>Smerdon, Michael J.</creatorcontrib><title>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.</description><subject>Animals</subject><subject>Binding, Competitive</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin - chemistry</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Histones - chemistry</subject><subject>Hydroxyl Radical</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Protein Conformation</subject><subject>Pyrimidine Dimers - chemistry</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtvFDEUhS0EIkugpUQuEN0s1_Y87HKV8JJCQAlBdJbHvpNxNDNebA-If4_DrpSK29zmO0dHHyEvGWwZdPXbu95uPzeg6k5ygEdkw0CKSjTsx2OyAeCsUryRJ-RZSndQrlbsKTlhLWcgGN-QsLM2zHNwJvuwULM4eoV74yMNAzX05jv9OoYc9jG41WbqF3p-uaMm03M_DBhxyfQq5H9hM9FrzNkvt4mWqjwivVzthCGFGen1Ggdj8Tl5Mpgp4YvjPyU37999O_tYXXz58Olsd1HZBmSuagVCiU7dD-6laQx2Ulnsm1YKoVquWtWzmnUc6mYAJ3ourWgdZ473YBHEKXlz6C3Lf66Ysp59sjhNZsGwJs1Ku1RcFnB7AG0MKUUc9D762cQ_moG-V6yLYv2guAReHZvXfkb3gB-dFuD1ARj97fjbR9S9D3bEWXMJupa6BmhYweQBw6Lhl8eok_W4WHQlYrN2wf9vwl9MCZSl</recordid><startdate>20051202</startdate><enddate>20051202</enddate><creator>Svedružić, Željko M.</creator><creator>Wang, Chenbo</creator><creator>Kosmoski, Joseph V.</creator><creator>Smerdon, Michael J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20051202</creationdate><title>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</title><author>Svedružić, Željko M. ; Wang, Chenbo ; Kosmoski, Joseph V. ; Smerdon, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-490393790049b8a5ae789ceb56833962969b14172045f0d3b28c36d21d2b0ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Binding, Competitive</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin - chemistry</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Histones - chemistry</topic><topic>Hydroxyl Radical</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Protein Conformation</topic><topic>Pyrimidine Dimers - chemistry</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svedružić, Željko M.</creatorcontrib><creatorcontrib>Wang, Chenbo</creatorcontrib><creatorcontrib>Kosmoski, Joseph V.</creatorcontrib><creatorcontrib>Smerdon, Michael J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svedružić, Željko M.</au><au>Wang, Chenbo</au><au>Kosmoski, Joseph V.</au><au>Smerdon, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-12-02</date><risdate>2005</risdate><volume>280</volume><issue>48</issue><spage>40051</spage><epage>40057</epage><pages>40051-40057</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30° bending and 9° unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2–3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16210312</pmid><doi>10.1074/jbc.M509478200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2005-12, Vol.280 (48), p.40051-40057 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_19378928 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Binding, Competitive Cell Nucleus - metabolism Chromatin - chemistry Dimerization DNA - chemistry DNA Damage DNA Repair Histones - chemistry Hydroxyl Radical Models, Molecular Nucleic Acid Conformation Nucleosomes - chemistry Nucleosomes - metabolism Oocytes - metabolism Protein Conformation Pyrimidine Dimers - chemistry Thermodynamics Time Factors Ultraviolet Rays Xenopus Xenopus laevis |
title | Accommodation and Repair of a UV Photoproduct in DNA at Different Rotational Settings on the Nucleosome Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accommodation%20and%20Repair%20of%20a%20UV%20Photoproduct%20in%20DNA%20at%20Different%20Rotational%20Settings%20on%20the%20Nucleosome%20Surface&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Svedru%C5%BEi%C4%87,%20%C5%BDeljko%20M.&rft.date=2005-12-02&rft.volume=280&rft.issue=48&rft.spage=40051&rft.epage=40057&rft.pages=40051-40057&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M509478200&rft_dat=%3Cproquest_cross%3E19378928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19378928&rft_id=info:pmid/16210312&rft_els_id=S0021925819481349&rfr_iscdi=true |