Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways

OBJECTIVE—Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2017-11, Vol.37 (11), p.2161-2170
Hauptverfasser: Nakao, Tetsushi, Horie, Takahiro, Baba, Osamu, Nishiga, Masataka, Nishino, Tomohiro, Izuhara, Masayasu, Kuwabara, Yasuhide, Nishi, Hitoo, Usami, Shunsuke, Nakazeki, Fumiko, Ide, Yuya, Koyama, Satoshi, Kimura, Masahiro, Sowa, Naoya, Ohno, Satoko, Aoki, Hiroki, Hasagawa, Koji, Sakamoto, Kazuhisa, Minatoya, Kenji, Kimura, Takeshi, Ono, Koh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2170
container_issue 11
container_start_page 2161
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 37
creator Nakao, Tetsushi
Horie, Takahiro
Baba, Osamu
Nishiga, Masataka
Nishino, Tomohiro
Izuhara, Masayasu
Kuwabara, Yasuhide
Nishi, Hitoo
Usami, Shunsuke
Nakazeki, Fumiko
Ide, Yuya
Koyama, Satoshi
Kimura, Masahiro
Sowa, Naoya
Ohno, Satoko
Aoki, Hiroki
Hasagawa, Koji
Sakamoto, Kazuhisa
Minatoya, Kenji
Kimura, Takeshi
Ono, Koh
description OBJECTIVE—Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that microRNA-33 inhibition and genetic ablation of microRNA-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS—MicroRNA-33a-5p expression in central zone of human AAA was higher than marginal zone. MicroRNA-33 deletion attenuated AAA formation in both mouse models of angiotensin II– and calcium chloride–induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride–induced AAA walls in microRNA-33 mice. In vitro experiments revealed that peritoneal macrophages from microRNA-33 mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from microRNA-33 mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of microRNA-33. Moreover, high-density lipoprotein cholesterol derived from microRNA-33 mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that microRNA-33–deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MicroRNA-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS—These data strongly suggest that inhibition of microRNA-33 will be effective as a novel strategy for treating AAA.
doi_str_mv 10.1161/ATVBAHA.117.309768
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1937528272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937528272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4608-65bf3c154643fd802aa6597381d153f61a8a4e7b10720f32c815574f1b5cde883</originalsourceid><addsrcrecordid>eNp9kMtu1TAQhi0EoqXwAiyQl2xSfLfPMlS9SeUiKGwjJxnrBBy72E6Pzgvw3Ljk0CWrmZG-_5fmQ-g1JaeUKvquvf3-vr1q66FPOdloZZ6gYyqZaITi6mndid40Ugl2hF7k_IMQIhgjz9ERM8Ywo8wx-n0JAco04Lb3tkwx4Ojwh2lI8cvHtuEct6VAWGyBjK-D83aeV8yGsWbGOE_BetzG9LckwJL2ecYXMR24-8nir3AP6YEKZWoeW2La48-2bHd2n1-iZ876DK8O8wR9uzi_Pbtqbj5dXp-1N80gFDGNkr3jA5VCCe5GQ5i1Sm40N3SkkjtFrbECdF8fZ8RxNhgqpRaO9nIYwRh-gt6uvXcp_logl26e8gDe2wBxyR3dcC2ZYZpVlK1odZFzAtfdpWm2ad9R0j347w7-66G71X8NvTn0L_0M42Pkn_AKqBXYRV8g5Z9-2UHqtmB92f6v-Q-EYpL-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937528272</pqid></control><display><type>article</type><title>Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Nakao, Tetsushi ; Horie, Takahiro ; Baba, Osamu ; Nishiga, Masataka ; Nishino, Tomohiro ; Izuhara, Masayasu ; Kuwabara, Yasuhide ; Nishi, Hitoo ; Usami, Shunsuke ; Nakazeki, Fumiko ; Ide, Yuya ; Koyama, Satoshi ; Kimura, Masahiro ; Sowa, Naoya ; Ohno, Satoko ; Aoki, Hiroki ; Hasagawa, Koji ; Sakamoto, Kazuhisa ; Minatoya, Kenji ; Kimura, Takeshi ; Ono, Koh</creator><creatorcontrib>Nakao, Tetsushi ; Horie, Takahiro ; Baba, Osamu ; Nishiga, Masataka ; Nishino, Tomohiro ; Izuhara, Masayasu ; Kuwabara, Yasuhide ; Nishi, Hitoo ; Usami, Shunsuke ; Nakazeki, Fumiko ; Ide, Yuya ; Koyama, Satoshi ; Kimura, Masahiro ; Sowa, Naoya ; Ohno, Satoko ; Aoki, Hiroki ; Hasagawa, Koji ; Sakamoto, Kazuhisa ; Minatoya, Kenji ; Kimura, Takeshi ; Ono, Koh</creatorcontrib><description>OBJECTIVE—Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that microRNA-33 inhibition and genetic ablation of microRNA-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS—MicroRNA-33a-5p expression in central zone of human AAA was higher than marginal zone. MicroRNA-33 deletion attenuated AAA formation in both mouse models of angiotensin II– and calcium chloride–induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride–induced AAA walls in microRNA-33 mice. In vitro experiments revealed that peritoneal macrophages from microRNA-33 mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from microRNA-33 mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of microRNA-33. Moreover, high-density lipoprotein cholesterol derived from microRNA-33 mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that microRNA-33–deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MicroRNA-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS—These data strongly suggest that inhibition of microRNA-33 will be effective as a novel strategy for treating AAA.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.117.309768</identifier><identifier>PMID: 28882868</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Angiotensin II ; Animals ; Aorta, Abdominal - metabolism ; Aorta, Abdominal - pathology ; Aortic Aneurysm, Abdominal - chemically induced ; Aortic Aneurysm, Abdominal - genetics ; Aortic Aneurysm, Abdominal - metabolism ; Aortic Aneurysm, Abdominal - prevention &amp; control ; Aortitis - chemically induced ; Aortitis - genetics ; Aortitis - metabolism ; Aortitis - prevention &amp; control ; Apolipoproteins E - deficiency ; Apolipoproteins E - genetics ; Bone Marrow Transplantation ; Calcium Chloride ; Cell Line ; Chemokine CCL2 - metabolism ; Cholesterol, HDL - blood ; Dilatation, Pathologic ; Disease Models, Animal ; Female ; Genetic Predisposition to Disease ; Humans ; Inflammation Mediators - metabolism ; JNK Mitogen-Activated Protein Kinases - metabolism ; Macrophages, Peritoneal - metabolism ; Macrophages, Peritoneal - pathology ; Male ; Matrix Metalloproteinase 9 - metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phenotype ; Signal Transduction ; Time Factors ; Transfection ; Vascular Remodeling</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2017-11, Vol.37 (11), p.2161-2170</ispartof><rights>2017 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4608-65bf3c154643fd802aa6597381d153f61a8a4e7b10720f32c815574f1b5cde883</citedby><cites>FETCH-LOGICAL-c4608-65bf3c154643fd802aa6597381d153f61a8a4e7b10720f32c815574f1b5cde883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28882868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakao, Tetsushi</creatorcontrib><creatorcontrib>Horie, Takahiro</creatorcontrib><creatorcontrib>Baba, Osamu</creatorcontrib><creatorcontrib>Nishiga, Masataka</creatorcontrib><creatorcontrib>Nishino, Tomohiro</creatorcontrib><creatorcontrib>Izuhara, Masayasu</creatorcontrib><creatorcontrib>Kuwabara, Yasuhide</creatorcontrib><creatorcontrib>Nishi, Hitoo</creatorcontrib><creatorcontrib>Usami, Shunsuke</creatorcontrib><creatorcontrib>Nakazeki, Fumiko</creatorcontrib><creatorcontrib>Ide, Yuya</creatorcontrib><creatorcontrib>Koyama, Satoshi</creatorcontrib><creatorcontrib>Kimura, Masahiro</creatorcontrib><creatorcontrib>Sowa, Naoya</creatorcontrib><creatorcontrib>Ohno, Satoko</creatorcontrib><creatorcontrib>Aoki, Hiroki</creatorcontrib><creatorcontrib>Hasagawa, Koji</creatorcontrib><creatorcontrib>Sakamoto, Kazuhisa</creatorcontrib><creatorcontrib>Minatoya, Kenji</creatorcontrib><creatorcontrib>Kimura, Takeshi</creatorcontrib><creatorcontrib>Ono, Koh</creatorcontrib><title>Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that microRNA-33 inhibition and genetic ablation of microRNA-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS—MicroRNA-33a-5p expression in central zone of human AAA was higher than marginal zone. MicroRNA-33 deletion attenuated AAA formation in both mouse models of angiotensin II– and calcium chloride–induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride–induced AAA walls in microRNA-33 mice. In vitro experiments revealed that peritoneal macrophages from microRNA-33 mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from microRNA-33 mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of microRNA-33. Moreover, high-density lipoprotein cholesterol derived from microRNA-33 mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that microRNA-33–deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MicroRNA-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS—These data strongly suggest that inhibition of microRNA-33 will be effective as a novel strategy for treating AAA.</description><subject>Angiotensin II</subject><subject>Animals</subject><subject>Aorta, Abdominal - metabolism</subject><subject>Aorta, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - chemically induced</subject><subject>Aortic Aneurysm, Abdominal - genetics</subject><subject>Aortic Aneurysm, Abdominal - metabolism</subject><subject>Aortic Aneurysm, Abdominal - prevention &amp; control</subject><subject>Aortitis - chemically induced</subject><subject>Aortitis - genetics</subject><subject>Aortitis - metabolism</subject><subject>Aortitis - prevention &amp; control</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - genetics</subject><subject>Bone Marrow Transplantation</subject><subject>Calcium Chloride</subject><subject>Cell Line</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Cholesterol, HDL - blood</subject><subject>Dilatation, Pathologic</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Genetic Predisposition to Disease</subject><subject>Humans</subject><subject>Inflammation Mediators - metabolism</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Macrophages, Peritoneal - pathology</subject><subject>Male</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phenotype</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Vascular Remodeling</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtu1TAQhi0EoqXwAiyQl2xSfLfPMlS9SeUiKGwjJxnrBBy72E6Pzgvw3Ljk0CWrmZG-_5fmQ-g1JaeUKvquvf3-vr1q66FPOdloZZ6gYyqZaITi6mndid40Ugl2hF7k_IMQIhgjz9ERM8Ywo8wx-n0JAco04Lb3tkwx4Ojwh2lI8cvHtuEct6VAWGyBjK-D83aeV8yGsWbGOE_BetzG9LckwJL2ecYXMR24-8nir3AP6YEKZWoeW2La48-2bHd2n1-iZ876DK8O8wR9uzi_Pbtqbj5dXp-1N80gFDGNkr3jA5VCCe5GQ5i1Sm40N3SkkjtFrbECdF8fZ8RxNhgqpRaO9nIYwRh-gt6uvXcp_logl26e8gDe2wBxyR3dcC2ZYZpVlK1odZFzAtfdpWm2ad9R0j347w7-66G71X8NvTn0L_0M42Pkn_AKqBXYRV8g5Z9-2UHqtmB92f6v-Q-EYpL-</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Nakao, Tetsushi</creator><creator>Horie, Takahiro</creator><creator>Baba, Osamu</creator><creator>Nishiga, Masataka</creator><creator>Nishino, Tomohiro</creator><creator>Izuhara, Masayasu</creator><creator>Kuwabara, Yasuhide</creator><creator>Nishi, Hitoo</creator><creator>Usami, Shunsuke</creator><creator>Nakazeki, Fumiko</creator><creator>Ide, Yuya</creator><creator>Koyama, Satoshi</creator><creator>Kimura, Masahiro</creator><creator>Sowa, Naoya</creator><creator>Ohno, Satoko</creator><creator>Aoki, Hiroki</creator><creator>Hasagawa, Koji</creator><creator>Sakamoto, Kazuhisa</creator><creator>Minatoya, Kenji</creator><creator>Kimura, Takeshi</creator><creator>Ono, Koh</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways</title><author>Nakao, Tetsushi ; Horie, Takahiro ; Baba, Osamu ; Nishiga, Masataka ; Nishino, Tomohiro ; Izuhara, Masayasu ; Kuwabara, Yasuhide ; Nishi, Hitoo ; Usami, Shunsuke ; Nakazeki, Fumiko ; Ide, Yuya ; Koyama, Satoshi ; Kimura, Masahiro ; Sowa, Naoya ; Ohno, Satoko ; Aoki, Hiroki ; Hasagawa, Koji ; Sakamoto, Kazuhisa ; Minatoya, Kenji ; Kimura, Takeshi ; Ono, Koh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4608-65bf3c154643fd802aa6597381d153f61a8a4e7b10720f32c815574f1b5cde883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiotensin II</topic><topic>Animals</topic><topic>Aorta, Abdominal - metabolism</topic><topic>Aorta, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - chemically induced</topic><topic>Aortic Aneurysm, Abdominal - genetics</topic><topic>Aortic Aneurysm, Abdominal - metabolism</topic><topic>Aortic Aneurysm, Abdominal - prevention &amp; control</topic><topic>Aortitis - chemically induced</topic><topic>Aortitis - genetics</topic><topic>Aortitis - metabolism</topic><topic>Aortitis - prevention &amp; control</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - genetics</topic><topic>Bone Marrow Transplantation</topic><topic>Calcium Chloride</topic><topic>Cell Line</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Cholesterol, HDL - blood</topic><topic>Dilatation, Pathologic</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Genetic Predisposition to Disease</topic><topic>Humans</topic><topic>Inflammation Mediators - metabolism</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Macrophages, Peritoneal - pathology</topic><topic>Male</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phenotype</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Vascular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakao, Tetsushi</creatorcontrib><creatorcontrib>Horie, Takahiro</creatorcontrib><creatorcontrib>Baba, Osamu</creatorcontrib><creatorcontrib>Nishiga, Masataka</creatorcontrib><creatorcontrib>Nishino, Tomohiro</creatorcontrib><creatorcontrib>Izuhara, Masayasu</creatorcontrib><creatorcontrib>Kuwabara, Yasuhide</creatorcontrib><creatorcontrib>Nishi, Hitoo</creatorcontrib><creatorcontrib>Usami, Shunsuke</creatorcontrib><creatorcontrib>Nakazeki, Fumiko</creatorcontrib><creatorcontrib>Ide, Yuya</creatorcontrib><creatorcontrib>Koyama, Satoshi</creatorcontrib><creatorcontrib>Kimura, Masahiro</creatorcontrib><creatorcontrib>Sowa, Naoya</creatorcontrib><creatorcontrib>Ohno, Satoko</creatorcontrib><creatorcontrib>Aoki, Hiroki</creatorcontrib><creatorcontrib>Hasagawa, Koji</creatorcontrib><creatorcontrib>Sakamoto, Kazuhisa</creatorcontrib><creatorcontrib>Minatoya, Kenji</creatorcontrib><creatorcontrib>Kimura, Takeshi</creatorcontrib><creatorcontrib>Ono, Koh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakao, Tetsushi</au><au>Horie, Takahiro</au><au>Baba, Osamu</au><au>Nishiga, Masataka</au><au>Nishino, Tomohiro</au><au>Izuhara, Masayasu</au><au>Kuwabara, Yasuhide</au><au>Nishi, Hitoo</au><au>Usami, Shunsuke</au><au>Nakazeki, Fumiko</au><au>Ide, Yuya</au><au>Koyama, Satoshi</au><au>Kimura, Masahiro</au><au>Sowa, Naoya</au><au>Ohno, Satoko</au><au>Aoki, Hiroki</au><au>Hasagawa, Koji</au><au>Sakamoto, Kazuhisa</au><au>Minatoya, Kenji</au><au>Kimura, Takeshi</au><au>Ono, Koh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>37</volume><issue>11</issue><spage>2161</spage><epage>2170</epage><pages>2161-2170</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE—Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that microRNA-33 inhibition and genetic ablation of microRNA-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS—MicroRNA-33a-5p expression in central zone of human AAA was higher than marginal zone. MicroRNA-33 deletion attenuated AAA formation in both mouse models of angiotensin II– and calcium chloride–induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride–induced AAA walls in microRNA-33 mice. In vitro experiments revealed that peritoneal macrophages from microRNA-33 mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from microRNA-33 mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of microRNA-33. Moreover, high-density lipoprotein cholesterol derived from microRNA-33 mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that microRNA-33–deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MicroRNA-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS—These data strongly suggest that inhibition of microRNA-33 will be effective as a novel strategy for treating AAA.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>28882868</pmid><doi>10.1161/ATVBAHA.117.309768</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2017-11, Vol.37 (11), p.2161-2170
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_1937528272
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Angiotensin II
Animals
Aorta, Abdominal - metabolism
Aorta, Abdominal - pathology
Aortic Aneurysm, Abdominal - chemically induced
Aortic Aneurysm, Abdominal - genetics
Aortic Aneurysm, Abdominal - metabolism
Aortic Aneurysm, Abdominal - prevention & control
Aortitis - chemically induced
Aortitis - genetics
Aortitis - metabolism
Aortitis - prevention & control
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Bone Marrow Transplantation
Calcium Chloride
Cell Line
Chemokine CCL2 - metabolism
Cholesterol, HDL - blood
Dilatation, Pathologic
Disease Models, Animal
Female
Genetic Predisposition to Disease
Humans
Inflammation Mediators - metabolism
JNK Mitogen-Activated Protein Kinases - metabolism
Macrophages, Peritoneal - metabolism
Macrophages, Peritoneal - pathology
Male
Matrix Metalloproteinase 9 - metabolism
Mice, Inbred C57BL
Mice, Knockout
MicroRNAs - genetics
MicroRNAs - metabolism
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
p38 Mitogen-Activated Protein Kinases - metabolism
Phenotype
Signal Transduction
Time Factors
Transfection
Vascular Remodeling
title Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Ablation%20of%20MicroRNA-33%20Attenuates%20Inflammation%20and%20Abdominal%20Aortic%20Aneurysm%20Formation%20via%20Several%20Anti-Inflammatory%20Pathways&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Nakao,%20Tetsushi&rft.date=2017-11&rft.volume=37&rft.issue=11&rft.spage=2161&rft.epage=2170&rft.pages=2161-2170&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.117.309768&rft_dat=%3Cproquest_cross%3E1937528272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937528272&rft_id=info:pmid/28882868&rfr_iscdi=true