Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis

Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes, obesity & metabolism obesity & metabolism, 2017-09, Vol.19 (S1), p.115-123
1. Verfasser: Gaisano, Herbert Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue S1
container_start_page 115
container_title Diabetes, obesity & metabolism
container_volume 19
creator Gaisano, Herbert Y.
description Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.
doi_str_mv 10.1111/dom.13001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936620731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936208216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</originalsourceid><addsrcrecordid>eNp1kEtPwkAUhSdGI4gu_ANmEje6KMyjMx2WBPGRoCSo69pOb6Gk7WCnDfLvHSi6MPFuzl185-TkIHRJSZ-6GySm6FNOCD1CXepL7lHO5PH-Z54aEtZBZ9auCCE-V8Ep6jClFPED0UUfc9BQ1riEDc5Kmy2WtXVPbXC9BFyZHLBJ8evLaD7BUZngyFqjs6iGBK8rU4PzOHxnbXKniyoqG-eBL6O3tbGZPUcnaZRbuDhoD73fT97Gj9509vA0Hk09zZWiHg1SpROgqdQ0lr5gIlIgmRZCqSGNXd9YC6lAB8JPCEsEj3XMSaq5T5WvGe-hmzbX1fpswNZhkVkNeR6VYBob0iGXkpGAU4de_0FXpqlK125PMaIYlY66bSldGWsrSMN1lRVRtQ0pCXezh272cD-7Y68OiU1cQPJL_uzsgEELbLIctv8nhXez5zbyGxC_iw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936208216</pqid></control><display><type>article</type><title>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gaisano, Herbert Y.</creator><creatorcontrib>Gaisano, Herbert Y.</creatorcontrib><description>Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.13001</identifier><identifier>PMID: 28880475</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Beta cells ; Calcium Signaling ; Cell Membrane - metabolism ; Exocytosis ; Humans ; Insulin ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - metabolism ; Kinetics ; Membrane Fusion ; Munc18 Proteins - chemistry ; Munc18 Proteins - metabolism ; newcomer granules ; Protein Multimerization ; Proteins ; Secretory Pathway ; Secretory Vesicles - metabolism ; SNARE proteins ; SNARE Proteins - chemistry ; SNARE Proteins - metabolism</subject><ispartof>Diabetes, obesity &amp; metabolism, 2017-09, Vol.19 (S1), p.115-123</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</citedby><cites>FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</cites><orcidid>0000-0001-5213-9168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.13001$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.13001$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28880475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaisano, Herbert Y.</creatorcontrib><title>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</title><title>Diabetes, obesity &amp; metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.</description><subject>Animals</subject><subject>Beta cells</subject><subject>Calcium Signaling</subject><subject>Cell Membrane - metabolism</subject><subject>Exocytosis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Kinetics</subject><subject>Membrane Fusion</subject><subject>Munc18 Proteins - chemistry</subject><subject>Munc18 Proteins - metabolism</subject><subject>newcomer granules</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Secretory Pathway</subject><subject>Secretory Vesicles - metabolism</subject><subject>SNARE proteins</subject><subject>SNARE Proteins - chemistry</subject><subject>SNARE Proteins - metabolism</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwkAUhSdGI4gu_ANmEje6KMyjMx2WBPGRoCSo69pOb6Gk7WCnDfLvHSi6MPFuzl185-TkIHRJSZ-6GySm6FNOCD1CXepL7lHO5PH-Z54aEtZBZ9auCCE-V8Ep6jClFPED0UUfc9BQ1riEDc5Kmy2WtXVPbXC9BFyZHLBJ8evLaD7BUZngyFqjs6iGBK8rU4PzOHxnbXKniyoqG-eBL6O3tbGZPUcnaZRbuDhoD73fT97Gj9509vA0Hk09zZWiHg1SpROgqdQ0lr5gIlIgmRZCqSGNXd9YC6lAB8JPCEsEj3XMSaq5T5WvGe-hmzbX1fpswNZhkVkNeR6VYBob0iGXkpGAU4de_0FXpqlK125PMaIYlY66bSldGWsrSMN1lRVRtQ0pCXezh272cD-7Y68OiU1cQPJL_uzsgEELbLIctv8nhXez5zbyGxC_iw0</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Gaisano, Herbert Y.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5213-9168</orcidid></search><sort><creationdate>201709</creationdate><title>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</title><author>Gaisano, Herbert Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Beta cells</topic><topic>Calcium Signaling</topic><topic>Cell Membrane - metabolism</topic><topic>Exocytosis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Kinetics</topic><topic>Membrane Fusion</topic><topic>Munc18 Proteins - chemistry</topic><topic>Munc18 Proteins - metabolism</topic><topic>newcomer granules</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Secretory Pathway</topic><topic>Secretory Vesicles - metabolism</topic><topic>SNARE proteins</topic><topic>SNARE Proteins - chemistry</topic><topic>SNARE Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaisano, Herbert Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes, obesity &amp; metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaisano, Herbert Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</atitle><jtitle>Diabetes, obesity &amp; metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2017-09</date><risdate>2017</risdate><volume>19</volume><issue>S1</issue><spage>115</spage><epage>123</epage><pages>115-123</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>28880475</pmid><doi>10.1111/dom.13001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5213-9168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-8902
ispartof Diabetes, obesity & metabolism, 2017-09, Vol.19 (S1), p.115-123
issn 1462-8902
1463-1326
language eng
recordid cdi_proquest_miscellaneous_1936620731
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Beta cells
Calcium Signaling
Cell Membrane - metabolism
Exocytosis
Humans
Insulin
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - metabolism
Kinetics
Membrane Fusion
Munc18 Proteins - chemistry
Munc18 Proteins - metabolism
newcomer granules
Protein Multimerization
Proteins
Secretory Pathway
Secretory Vesicles - metabolism
SNARE proteins
SNARE Proteins - chemistry
SNARE Proteins - metabolism
title Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20new%20insights%20into%20the%20role%20of%20SNARE%20and%20associated%20proteins%20in%20insulin%20granule%20exocytosis&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Gaisano,%20Herbert%20Y.&rft.date=2017-09&rft.volume=19&rft.issue=S1&rft.spage=115&rft.epage=123&rft.pages=115-123&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.13001&rft_dat=%3Cproquest_cross%3E1936208216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936208216&rft_id=info:pmid/28880475&rfr_iscdi=true