Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis
Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic v...
Gespeichert in:
Veröffentlicht in: | Diabetes, obesity & metabolism obesity & metabolism, 2017-09, Vol.19 (S1), p.115-123 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | S1 |
container_start_page | 115 |
container_title | Diabetes, obesity & metabolism |
container_volume | 19 |
creator | Gaisano, Herbert Y. |
description | Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells. |
doi_str_mv | 10.1111/dom.13001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936620731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936208216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</originalsourceid><addsrcrecordid>eNp1kEtPwkAUhSdGI4gu_ANmEje6KMyjMx2WBPGRoCSo69pOb6Gk7WCnDfLvHSi6MPFuzl185-TkIHRJSZ-6GySm6FNOCD1CXepL7lHO5PH-Z54aEtZBZ9auCCE-V8Ep6jClFPED0UUfc9BQ1riEDc5Kmy2WtXVPbXC9BFyZHLBJ8evLaD7BUZngyFqjs6iGBK8rU4PzOHxnbXKniyoqG-eBL6O3tbGZPUcnaZRbuDhoD73fT97Gj9509vA0Hk09zZWiHg1SpROgqdQ0lr5gIlIgmRZCqSGNXd9YC6lAB8JPCEsEj3XMSaq5T5WvGe-hmzbX1fpswNZhkVkNeR6VYBob0iGXkpGAU4de_0FXpqlK125PMaIYlY66bSldGWsrSMN1lRVRtQ0pCXezh272cD-7Y68OiU1cQPJL_uzsgEELbLIctv8nhXez5zbyGxC_iw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936208216</pqid></control><display><type>article</type><title>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gaisano, Herbert Y.</creator><creatorcontrib>Gaisano, Herbert Y.</creatorcontrib><description>Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.13001</identifier><identifier>PMID: 28880475</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Beta cells ; Calcium Signaling ; Cell Membrane - metabolism ; Exocytosis ; Humans ; Insulin ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - metabolism ; Kinetics ; Membrane Fusion ; Munc18 Proteins - chemistry ; Munc18 Proteins - metabolism ; newcomer granules ; Protein Multimerization ; Proteins ; Secretory Pathway ; Secretory Vesicles - metabolism ; SNARE proteins ; SNARE Proteins - chemistry ; SNARE Proteins - metabolism</subject><ispartof>Diabetes, obesity & metabolism, 2017-09, Vol.19 (S1), p.115-123</ispartof><rights>2017 John Wiley & Sons Ltd</rights><rights>2017 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</citedby><cites>FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</cites><orcidid>0000-0001-5213-9168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.13001$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.13001$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28880475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaisano, Herbert Y.</creatorcontrib><title>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</title><title>Diabetes, obesity & metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.</description><subject>Animals</subject><subject>Beta cells</subject><subject>Calcium Signaling</subject><subject>Cell Membrane - metabolism</subject><subject>Exocytosis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Kinetics</subject><subject>Membrane Fusion</subject><subject>Munc18 Proteins - chemistry</subject><subject>Munc18 Proteins - metabolism</subject><subject>newcomer granules</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Secretory Pathway</subject><subject>Secretory Vesicles - metabolism</subject><subject>SNARE proteins</subject><subject>SNARE Proteins - chemistry</subject><subject>SNARE Proteins - metabolism</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwkAUhSdGI4gu_ANmEje6KMyjMx2WBPGRoCSo69pOb6Gk7WCnDfLvHSi6MPFuzl185-TkIHRJSZ-6GySm6FNOCD1CXepL7lHO5PH-Z54aEtZBZ9auCCE-V8Ep6jClFPED0UUfc9BQ1riEDc5Kmy2WtXVPbXC9BFyZHLBJ8evLaD7BUZngyFqjs6iGBK8rU4PzOHxnbXKniyoqG-eBL6O3tbGZPUcnaZRbuDhoD73fT97Gj9509vA0Hk09zZWiHg1SpROgqdQ0lr5gIlIgmRZCqSGNXd9YC6lAB8JPCEsEj3XMSaq5T5WvGe-hmzbX1fpswNZhkVkNeR6VYBob0iGXkpGAU4de_0FXpqlK125PMaIYlY66bSldGWsrSMN1lRVRtQ0pCXezh272cD-7Y68OiU1cQPJL_uzsgEELbLIctv8nhXez5zbyGxC_iw0</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Gaisano, Herbert Y.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5213-9168</orcidid></search><sort><creationdate>201709</creationdate><title>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</title><author>Gaisano, Herbert Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-17f8cde1f6c1b64525a8e62c558891b888bc568ec754d02d53bcb30fc34184c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Beta cells</topic><topic>Calcium Signaling</topic><topic>Cell Membrane - metabolism</topic><topic>Exocytosis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Kinetics</topic><topic>Membrane Fusion</topic><topic>Munc18 Proteins - chemistry</topic><topic>Munc18 Proteins - metabolism</topic><topic>newcomer granules</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Secretory Pathway</topic><topic>Secretory Vesicles - metabolism</topic><topic>SNARE proteins</topic><topic>SNARE Proteins - chemistry</topic><topic>SNARE Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaisano, Herbert Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes, obesity & metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaisano, Herbert Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis</atitle><jtitle>Diabetes, obesity & metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2017-09</date><risdate>2017</risdate><volume>19</volume><issue>S1</issue><spage>115</spage><epage>123</epage><pages>115-123</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β‐cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β‐cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi‐SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non‐fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub‐PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β‐cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β‐cells.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>28880475</pmid><doi>10.1111/dom.13001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5213-9168</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-8902 |
ispartof | Diabetes, obesity & metabolism, 2017-09, Vol.19 (S1), p.115-123 |
issn | 1462-8902 1463-1326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1936620731 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Beta cells Calcium Signaling Cell Membrane - metabolism Exocytosis Humans Insulin Insulin - metabolism Insulin Secretion Insulin-Secreting Cells - metabolism Kinetics Membrane Fusion Munc18 Proteins - chemistry Munc18 Proteins - metabolism newcomer granules Protein Multimerization Proteins Secretory Pathway Secretory Vesicles - metabolism SNARE proteins SNARE Proteins - chemistry SNARE Proteins - metabolism |
title | Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20new%20insights%20into%20the%20role%20of%20SNARE%20and%20associated%20proteins%20in%20insulin%20granule%20exocytosis&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Gaisano,%20Herbert%20Y.&rft.date=2017-09&rft.volume=19&rft.issue=S1&rft.spage=115&rft.epage=123&rft.pages=115-123&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.13001&rft_dat=%3Cproquest_cross%3E1936208216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936208216&rft_id=info:pmid/28880475&rfr_iscdi=true |