Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity

Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of nutrition 2017-08, Vol.118 (4), p.241-249
Hauptverfasser: Ojo, Babajide, Simenson, Ashley J., O’Hara, Crystal, Wu, Lei, Gou, Xin, Peterson, Sandra K., Lin, Daniel, Smith, Brenda J., Lucas, Edralin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 4
container_start_page 241
container_title British journal of nutrition
container_volume 118
creator Ojo, Babajide
Simenson, Ashley J.
O’Hara, Crystal
Wu, Lei
Gou, Xin
Peterson, Sandra K.
Lin, Daniel
Smith, Brenda J.
Lucas, Edralin A.
description Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat–high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (−16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P
doi_str_mv 10.1017/S0007114517002082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936265677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007114517002082</cupid><sourcerecordid>1936265677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d9a708f1dcd7d64e310b88ff2ded31663392c29a0ef2a1d2c89acf409438eace3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9lr9AW4k4MbN2HzMTJKllFqFgosqLodzkzNtSia5Jhnh_gT_tbntVUERAiG8z_sk4RDykrO3nHF1ds0YU5z3A1eMCabFI7LhvRo6MY7iMdkc4u6Qn5Bnpdy1o-bMPCUnQms1aMU35MfXW4RKbzAvtKy7XcAFY4XqU6QQAn73ULFQH8safKQZiy8VokUK0VEL2XmwdPE12dsUXfYQqNuXeY323tE6cFh-acGSHAaaZuo81s5Ht1p0NG2btO6fkyczhIIvjvsp-fL-4vP5h-7q0-XH83dXnZVK1s4ZUEzP3Fmn3Nij5Gyr9TwLh07ycZTSCCsMMJwFcCesNmDnnpleagSL8pS8efDucvq2YqnT4ovFECBiWsvEjRzFOIxKNfT1X-hdWnNsr5tEw4wZhBkaxR8om1MpGedpl9t3837ibDrMafpnTq3z6mhetwu6341fg2mAPEph2WbvbvDP3f_X_gRt-Z-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193995295</pqid></control><display><type>article</type><title>Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ojo, Babajide ; Simenson, Ashley J. ; O’Hara, Crystal ; Wu, Lei ; Gou, Xin ; Peterson, Sandra K. ; Lin, Daniel ; Smith, Brenda J. ; Lucas, Edralin A.</creator><creatorcontrib>Ojo, Babajide ; Simenson, Ashley J. ; O’Hara, Crystal ; Wu, Lei ; Gou, Xin ; Peterson, Sandra K. ; Lin, Daniel ; Smith, Brenda J. ; Lucas, Edralin A.</creatorcontrib><description>Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat–high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (−16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P&lt;0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S0007114517002082</identifier><identifier>PMID: 28875871</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Animal models ; Animals ; Antioxidants ; Antioxidants - metabolism ; Antioxidants - pharmacology ; Antioxidants - therapeutic use ; Cholesterol ; Diabetes ; Diet ; Diet, High-Fat ; Dietary Supplements ; Disease Models, Animal ; Drug dosages ; Fatty acids ; Gastric Inhibitory Polypeptide - blood ; Gene expression ; Gene Expression - drug effects ; Genes ; Glucose ; Heart ; Heart - drug effects ; High fat diet ; Insulin ; Insulin - blood ; Insulin Resistance ; Intra-Abdominal Fat - metabolism ; Laboratory animals ; Lipids ; Liver ; Liver - drug effects ; Liver - metabolism ; Male ; Markers ; Metabolism ; Metabolism and Metabolic Studies ; Mice ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Musculoskeletal system ; Myocardium - metabolism ; Obesity ; Obesity - complications ; Obesity - drug therapy ; Obesity - etiology ; Obesity - metabolism ; Oxidative stress ; Oxidative Stress - drug effects ; Peptides ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Plant Preparations - pharmacology ; Plant Preparations - therapeutic use ; Reactive Oxygen Species ; Substrates ; Sucrose ; Sugar ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Triticum ; Wheat ; Wheat germ</subject><ispartof>British journal of nutrition, 2017-08, Vol.118 (4), p.241-249</ispartof><rights>Copyright © The Authors 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d9a708f1dcd7d64e310b88ff2ded31663392c29a0ef2a1d2c89acf409438eace3</citedby><cites>FETCH-LOGICAL-c373t-d9a708f1dcd7d64e310b88ff2ded31663392c29a0ef2a1d2c89acf409438eace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007114517002082/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28875871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ojo, Babajide</creatorcontrib><creatorcontrib>Simenson, Ashley J.</creatorcontrib><creatorcontrib>O’Hara, Crystal</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Gou, Xin</creatorcontrib><creatorcontrib>Peterson, Sandra K.</creatorcontrib><creatorcontrib>Lin, Daniel</creatorcontrib><creatorcontrib>Smith, Brenda J.</creatorcontrib><creatorcontrib>Lucas, Edralin A.</creatorcontrib><title>Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat–high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (−16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P&lt;0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Antioxidants - pharmacology</subject><subject>Antioxidants - therapeutic use</subject><subject>Cholesterol</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Dietary Supplements</subject><subject>Disease Models, Animal</subject><subject>Drug dosages</subject><subject>Fatty acids</subject><subject>Gastric Inhibitory Polypeptide - blood</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Genes</subject><subject>Glucose</subject><subject>Heart</subject><subject>Heart - drug effects</subject><subject>High fat diet</subject><subject>Insulin</subject><subject>Insulin - blood</subject><subject>Insulin Resistance</subject><subject>Intra-Abdominal Fat - metabolism</subject><subject>Laboratory animals</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Markers</subject><subject>Metabolism</subject><subject>Metabolism and Metabolic Studies</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Musculoskeletal system</subject><subject>Myocardium - metabolism</subject><subject>Obesity</subject><subject>Obesity - complications</subject><subject>Obesity - drug therapy</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Peptides</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Plant Preparations - pharmacology</subject><subject>Plant Preparations - therapeutic use</subject><subject>Reactive Oxygen Species</subject><subject>Substrates</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Triticum</subject><subject>Wheat</subject><subject>Wheat germ</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1rFTEUhoMo9lr9AW4k4MbN2HzMTJKllFqFgosqLodzkzNtSia5Jhnh_gT_tbntVUERAiG8z_sk4RDykrO3nHF1ds0YU5z3A1eMCabFI7LhvRo6MY7iMdkc4u6Qn5Bnpdy1o-bMPCUnQms1aMU35MfXW4RKbzAvtKy7XcAFY4XqU6QQAn73ULFQH8safKQZiy8VokUK0VEL2XmwdPE12dsUXfYQqNuXeY323tE6cFh-acGSHAaaZuo81s5Ht1p0NG2btO6fkyczhIIvjvsp-fL-4vP5h-7q0-XH83dXnZVK1s4ZUEzP3Fmn3Nij5Gyr9TwLh07ycZTSCCsMMJwFcCesNmDnnpleagSL8pS8efDucvq2YqnT4ovFECBiWsvEjRzFOIxKNfT1X-hdWnNsr5tEw4wZhBkaxR8om1MpGedpl9t3837ibDrMafpnTq3z6mhetwu6341fg2mAPEph2WbvbvDP3f_X_gRt-Z-d</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Ojo, Babajide</creator><creator>Simenson, Ashley J.</creator><creator>O’Hara, Crystal</creator><creator>Wu, Lei</creator><creator>Gou, Xin</creator><creator>Peterson, Sandra K.</creator><creator>Lin, Daniel</creator><creator>Smith, Brenda J.</creator><creator>Lucas, Edralin A.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7T5</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170801</creationdate><title>Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity</title><author>Ojo, Babajide ; Simenson, Ashley J. ; O’Hara, Crystal ; Wu, Lei ; Gou, Xin ; Peterson, Sandra K. ; Lin, Daniel ; Smith, Brenda J. ; Lucas, Edralin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d9a708f1dcd7d64e310b88ff2ded31663392c29a0ef2a1d2c89acf409438eace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Antioxidants - pharmacology</topic><topic>Antioxidants - therapeutic use</topic><topic>Cholesterol</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Dietary Supplements</topic><topic>Disease Models, Animal</topic><topic>Drug dosages</topic><topic>Fatty acids</topic><topic>Gastric Inhibitory Polypeptide - blood</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Genes</topic><topic>Glucose</topic><topic>Heart</topic><topic>Heart - drug effects</topic><topic>High fat diet</topic><topic>Insulin</topic><topic>Insulin - blood</topic><topic>Insulin Resistance</topic><topic>Intra-Abdominal Fat - metabolism</topic><topic>Laboratory animals</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Markers</topic><topic>Metabolism</topic><topic>Metabolism and Metabolic Studies</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Musculoskeletal system</topic><topic>Myocardium - metabolism</topic><topic>Obesity</topic><topic>Obesity - complications</topic><topic>Obesity - drug therapy</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Peptides</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Plant Preparations - pharmacology</topic><topic>Plant Preparations - therapeutic use</topic><topic>Reactive Oxygen Species</topic><topic>Substrates</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Triticum</topic><topic>Wheat</topic><topic>Wheat germ</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ojo, Babajide</creatorcontrib><creatorcontrib>Simenson, Ashley J.</creatorcontrib><creatorcontrib>O’Hara, Crystal</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Gou, Xin</creatorcontrib><creatorcontrib>Peterson, Sandra K.</creatorcontrib><creatorcontrib>Lin, Daniel</creatorcontrib><creatorcontrib>Smith, Brenda J.</creatorcontrib><creatorcontrib>Lucas, Edralin A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ojo, Babajide</au><au>Simenson, Ashley J.</au><au>O’Hara, Crystal</au><au>Wu, Lei</au><au>Gou, Xin</au><au>Peterson, Sandra K.</au><au>Lin, Daniel</au><au>Smith, Brenda J.</au><au>Lucas, Edralin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>118</volume><issue>4</issue><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><abstract>Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat–high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (−16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P&lt;0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>28875871</pmid><doi>10.1017/S0007114517002082</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-1145
ispartof British journal of nutrition, 2017-08, Vol.118 (4), p.241-249
issn 0007-1145
1475-2662
language eng
recordid cdi_proquest_miscellaneous_1936265677
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals; Free Full-Text Journals in Chemistry
subjects Animal models
Animals
Antioxidants
Antioxidants - metabolism
Antioxidants - pharmacology
Antioxidants - therapeutic use
Cholesterol
Diabetes
Diet
Diet, High-Fat
Dietary Supplements
Disease Models, Animal
Drug dosages
Fatty acids
Gastric Inhibitory Polypeptide - blood
Gene expression
Gene Expression - drug effects
Genes
Glucose
Heart
Heart - drug effects
High fat diet
Insulin
Insulin - blood
Insulin Resistance
Intra-Abdominal Fat - metabolism
Laboratory animals
Lipids
Liver
Liver - drug effects
Liver - metabolism
Male
Markers
Metabolism
Metabolism and Metabolic Studies
Mice
Mice, Inbred C57BL
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Musculoskeletal system
Myocardium - metabolism
Obesity
Obesity - complications
Obesity - drug therapy
Obesity - etiology
Obesity - metabolism
Oxidative stress
Oxidative Stress - drug effects
Peptides
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Plant Preparations - pharmacology
Plant Preparations - therapeutic use
Reactive Oxygen Species
Substrates
Sucrose
Sugar
Superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Triticum
Wheat
Wheat germ
title Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wheat%20germ%20supplementation%20alleviates%20insulin%20resistance%20and%20cardiac%20mitochondrial%20dysfunction%20in%20an%20animal%20model%20of%20diet-induced%20obesity&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Ojo,%20Babajide&rft.date=2017-08-01&rft.volume=118&rft.issue=4&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=0007-1145&rft.eissn=1475-2662&rft_id=info:doi/10.1017/S0007114517002082&rft_dat=%3Cproquest_cross%3E1936265677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193995295&rft_id=info:pmid/28875871&rft_cupid=10_1017_S0007114517002082&rfr_iscdi=true