Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching
We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the an...
Gespeichert in:
Veröffentlicht in: | Applied spectroscopy 2017-09, Vol.71 (9), p.2136-2145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2145 |
---|---|
container_issue | 9 |
container_start_page | 2136 |
container_title | Applied spectroscopy |
container_volume | 71 |
creator | Reynard, Justin M. Van Gorder, Nathan S. Bright, Frank V. |
description | We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries. |
doi_str_mv | 10.1177/0003702817696092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936165789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0003702817696092</sage_id><sourcerecordid>1936165789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b09b5af5f4e8c232f61e524fa2af6c12e33d4c5ca7d3dc0c1c33d1b2c998c43a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAYhC0EoqWwM6GMLAF_xE48VuWrElKLgDlyHLt1ldjFjof-e1y1MCAxnV69z51OB8A1gncIleU9hJCUEFeoZJxBjk_AGPGC5IQSeArG-3e-_4_ARQibdFJO6DkY4apiGBI2Bg8Lb1bGZk5nUyu63aDyuW2jVG22dN7FkL2bzkhns-XaDa6LvbEqSGWlyt5ikrWxq0twpkUX1NVRJ-Dz6fFj9pK_Lp7ns-lrLgkph7yBvKFCU12oSmKCNUOK4kILLDSTCCtC2kJSKcqWtBJKlGwtarDkvJIFEWQCbg-5W---ogpD3ZvUpeuEValqjThhiNGy4gmFB1R6F4JXut560wu_qxGs99vVf7dLlptjemx61f4afsZKQH4AglipeuOiT4uF_wO_AeKIdnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936165789</pqid></control><display><type>article</type><title>Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching</title><source>SAGE Complete A-Z List</source><creator>Reynard, Justin M. ; Van Gorder, Nathan S. ; Bright, Frank V.</creator><creatorcontrib>Reynard, Justin M. ; Van Gorder, Nathan S. ; Bright, Frank V.</creatorcontrib><description>We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.</description><identifier>ISSN: 0003-7028</identifier><identifier>EISSN: 1943-3530</identifier><identifier>DOI: 10.1177/0003702817696092</identifier><identifier>PMID: 28862036</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Applied spectroscopy, 2017-09, Vol.71 (9), p.2136-2145</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b09b5af5f4e8c232f61e524fa2af6c12e33d4c5ca7d3dc0c1c33d1b2c998c43a3</citedby><cites>FETCH-LOGICAL-c337t-b09b5af5f4e8c232f61e524fa2af6c12e33d4c5ca7d3dc0c1c33d1b2c998c43a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0003702817696092$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0003702817696092$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28862036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynard, Justin M.</creatorcontrib><creatorcontrib>Van Gorder, Nathan S.</creatorcontrib><creatorcontrib>Bright, Frank V.</creatorcontrib><title>Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching</title><title>Applied spectroscopy</title><addtitle>Appl Spectrosc</addtitle><description>We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.</description><issn>0003-7028</issn><issn>1943-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAYhC0EoqWwM6GMLAF_xE48VuWrElKLgDlyHLt1ldjFjof-e1y1MCAxnV69z51OB8A1gncIleU9hJCUEFeoZJxBjk_AGPGC5IQSeArG-3e-_4_ARQibdFJO6DkY4apiGBI2Bg8Lb1bGZk5nUyu63aDyuW2jVG22dN7FkL2bzkhns-XaDa6LvbEqSGWlyt5ikrWxq0twpkUX1NVRJ-Dz6fFj9pK_Lp7ns-lrLgkph7yBvKFCU12oSmKCNUOK4kILLDSTCCtC2kJSKcqWtBJKlGwtarDkvJIFEWQCbg-5W---ogpD3ZvUpeuEValqjThhiNGy4gmFB1R6F4JXut560wu_qxGs99vVf7dLlptjemx61f4afsZKQH4AglipeuOiT4uF_wO_AeKIdnY</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Reynard, Justin M.</creator><creator>Van Gorder, Nathan S.</creator><creator>Bright, Frank V.</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching</title><author>Reynard, Justin M. ; Van Gorder, Nathan S. ; Bright, Frank V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b09b5af5f4e8c232f61e524fa2af6c12e33d4c5ca7d3dc0c1c33d1b2c998c43a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynard, Justin M.</creatorcontrib><creatorcontrib>Van Gorder, Nathan S.</creatorcontrib><creatorcontrib>Bright, Frank V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynard, Justin M.</au><au>Van Gorder, Nathan S.</au><au>Bright, Frank V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching</atitle><jtitle>Applied spectroscopy</jtitle><addtitle>Appl Spectrosc</addtitle><date>2017-09</date><risdate>2017</risdate><volume>71</volume><issue>9</issue><spage>2136</spage><epage>2145</epage><pages>2136-2145</pages><issn>0003-7028</issn><eissn>1943-3530</eissn><abstract>We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>28862036</pmid><doi>10.1177/0003702817696092</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-7028 |
ispartof | Applied spectroscopy, 2017-09, Vol.71 (9), p.2136-2145 |
issn | 0003-7028 1943-3530 |
language | eng |
recordid | cdi_proquest_miscellaneous_1936165789 |
source | SAGE Complete A-Z List |
title | Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Analyte-Induced%20Porous%20Silicon%20Photoluminescence%20Quenching&rft.jtitle=Applied%20spectroscopy&rft.au=Reynard,%20Justin%20M.&rft.date=2017-09&rft.volume=71&rft.issue=9&rft.spage=2136&rft.epage=2145&rft.pages=2136-2145&rft.issn=0003-7028&rft.eissn=1943-3530&rft_id=info:doi/10.1177/0003702817696092&rft_dat=%3Cproquest_cross%3E1936165789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936165789&rft_id=info:pmid/28862036&rft_sage_id=10.1177_0003702817696092&rfr_iscdi=true |