Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model

While silicon nitride (Si3N4) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin‐resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si3N4 implants in vitro utilizing scanning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-12, Vol.105 (12), p.3413-3421
Hauptverfasser: Ishikawa, Masahiro, de Mesy Bentley, Karen L., McEntire, Bryan J., Bal, B. Sonny, Schwarz, Edward M., Xie, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3421
container_issue 12
container_start_page 3413
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Ishikawa, Masahiro
de Mesy Bentley, Karen L.
McEntire, Bryan J.
Bal, B. Sonny
Schwarz, Edward M.
Xie, Chao
description While silicon nitride (Si3N4) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin‐resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si3N4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant‐associated osteomyelitis. In vitro, the “as‐fired” Si3N4 implants displayed significant reductions in adherent bacteria versus machined Si3N4 (2.6 × 104 vs. 8.7 × 104 CFU, respectively; p 
doi_str_mv 10.1002/jbm.a.36189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936163192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956045654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4639-ba1bf920457094a5beddfe6cab5e925c47b307d4d60f4b62fab7779c6ac677ee3</originalsourceid><addsrcrecordid>eNp9kTtvFDEURi0EIiFQ0SNLNEhoFtvjx7oMEU8FUQC1ZXuuwauZ8WB7iLbjp8ebDSkoUvlaOvfo0_0Qek7JhhLC3uzctLGbXtKtfoBOqRCs41qKh4eZ665nWp6gJ6XsGiyJYI_RCdtupaBKnaK_39YcrAdc05J-Zrv82uMUcIlj9GnGc6w5DoBtCOBrwXaucYo-Jxft2H4DTqVAinOFtlzjH8BLTgvkGqEcRDXekHFaxrZbcJyxxdOa4wx4SgOMT9GjYMcCz27fM_Tj_bvvFx-7y68fPl2cX3aey153zlIXNCNcKKK5FQ6GIYD01gnQTHiuXE_UwAdJAneSBeuUUtpL66VSAP0ZenX0tny_VyjVTLF4GFssSGsxVLcLyp5q1tCX_6G7tOa5pWuUkC2DFLxRr49Uu0YpGYJZcpxs3htKzKEY04ox1twU0-gXt87VTTDcsf-aaAA7AldxhP19LvP57Zfzo_UaJc6cGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956045654</pqid></control><display><type>article</type><title>Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ishikawa, Masahiro ; de Mesy Bentley, Karen L. ; McEntire, Bryan J. ; Bal, B. Sonny ; Schwarz, Edward M. ; Xie, Chao</creator><creatorcontrib>Ishikawa, Masahiro ; de Mesy Bentley, Karen L. ; McEntire, Bryan J. ; Bal, B. Sonny ; Schwarz, Edward M. ; Xie, Chao</creatorcontrib><description>While silicon nitride (Si3N4) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin‐resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si3N4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant‐associated osteomyelitis. In vitro, the “as‐fired” Si3N4 implants displayed significant reductions in adherent bacteria versus machined Si3N4 (2.6 × 104 vs. 8.7 × 104 CFU, respectively; p &lt; 0.0002). Moreover, SEM imaging demonstrated that MRSA cannot directly adhere to native as‐fired Si3N4. Subsequently, a cross‐sectional study was completed in which sterile or MRSA contaminated as‐fired and machined Si3N4 implants were inserted into the tibiae of 8‐week old female Balb/c mice, and harvested on day 1, 3, 5, 7, 10, or 14 post‐operatively for SEM. The findings demonstrated that the antimicrobial activity of the as‐fired implants resulted from macrophage clearance of the bacteria during biofilm formation on day 1, followed by osseointegration through the apparent recruitment of mesenchymal stem cells on days 3–5, which differentiated into osteoblasts on days 7–14. In contrast, the antimicrobial behavior of the machined Si3N4 was due to repulsion of the bacteria, a phenomenon that also limited osteogenesis, as host cells were also unable to adhere to the machined surface. Taken together, these results suggest that the in vivo biological behavior of Si3N4 orthopaedic implants is driven by critical features of their surface nanotopography. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3413–3421, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36189</identifier><identifier>PMID: 28865177</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Antiinfectives and antibacterials ; antimicrobial ; Antimicrobial activity ; Antimicrobial agents ; Bacteria ; Biocompatibility ; Biofilms ; Biological effects ; Biomedical materials ; Bone implants ; Drug resistance ; Electron microscopy ; Macrophages ; Mesenchyme ; Methicillin ; Orthopaedic implants ; Osseointegration ; osseointegrative ; Osteoblasts ; Osteogenesis ; Osteomyelitis ; Recruitment ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Silicon ; Silicon nitride ; Staphylococcus aureus ; Staphylococcus infections ; Stem cell transplantation ; Stem cells ; Surgical implants ; Tibia ; Topography ; Transplants &amp; implants</subject><ispartof>Journal of biomedical materials research. Part A, 2017-12, Vol.105 (12), p.3413-3421</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4639-ba1bf920457094a5beddfe6cab5e925c47b307d4d60f4b62fab7779c6ac677ee3</citedby><cites>FETCH-LOGICAL-c4639-ba1bf920457094a5beddfe6cab5e925c47b307d4d60f4b62fab7779c6ac677ee3</cites><orcidid>0000-0002-7612-9789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28865177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishikawa, Masahiro</creatorcontrib><creatorcontrib>de Mesy Bentley, Karen L.</creatorcontrib><creatorcontrib>McEntire, Bryan J.</creatorcontrib><creatorcontrib>Bal, B. Sonny</creatorcontrib><creatorcontrib>Schwarz, Edward M.</creatorcontrib><creatorcontrib>Xie, Chao</creatorcontrib><title>Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>While silicon nitride (Si3N4) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin‐resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si3N4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant‐associated osteomyelitis. In vitro, the “as‐fired” Si3N4 implants displayed significant reductions in adherent bacteria versus machined Si3N4 (2.6 × 104 vs. 8.7 × 104 CFU, respectively; p &lt; 0.0002). Moreover, SEM imaging demonstrated that MRSA cannot directly adhere to native as‐fired Si3N4. Subsequently, a cross‐sectional study was completed in which sterile or MRSA contaminated as‐fired and machined Si3N4 implants were inserted into the tibiae of 8‐week old female Balb/c mice, and harvested on day 1, 3, 5, 7, 10, or 14 post‐operatively for SEM. The findings demonstrated that the antimicrobial activity of the as‐fired implants resulted from macrophage clearance of the bacteria during biofilm formation on day 1, followed by osseointegration through the apparent recruitment of mesenchymal stem cells on days 3–5, which differentiated into osteoblasts on days 7–14. In contrast, the antimicrobial behavior of the machined Si3N4 was due to repulsion of the bacteria, a phenomenon that also limited osteogenesis, as host cells were also unable to adhere to the machined surface. Taken together, these results suggest that the in vivo biological behavior of Si3N4 orthopaedic implants is driven by critical features of their surface nanotopography. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3413–3421, 2017.</description><subject>Animal models</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>Biofilms</subject><subject>Biological effects</subject><subject>Biomedical materials</subject><subject>Bone implants</subject><subject>Drug resistance</subject><subject>Electron microscopy</subject><subject>Macrophages</subject><subject>Mesenchyme</subject><subject>Methicillin</subject><subject>Orthopaedic implants</subject><subject>Osseointegration</subject><subject>osseointegrative</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteomyelitis</subject><subject>Recruitment</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Tibia</subject><subject>Topography</subject><subject>Transplants &amp; implants</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kTtvFDEURi0EIiFQ0SNLNEhoFtvjx7oMEU8FUQC1ZXuuwauZ8WB7iLbjp8ebDSkoUvlaOvfo0_0Qek7JhhLC3uzctLGbXtKtfoBOqRCs41qKh4eZ665nWp6gJ6XsGiyJYI_RCdtupaBKnaK_39YcrAdc05J-Zrv82uMUcIlj9GnGc6w5DoBtCOBrwXaucYo-Jxft2H4DTqVAinOFtlzjH8BLTgvkGqEcRDXekHFaxrZbcJyxxdOa4wx4SgOMT9GjYMcCz27fM_Tj_bvvFx-7y68fPl2cX3aey153zlIXNCNcKKK5FQ6GIYD01gnQTHiuXE_UwAdJAneSBeuUUtpL66VSAP0ZenX0tny_VyjVTLF4GFssSGsxVLcLyp5q1tCX_6G7tOa5pWuUkC2DFLxRr49Uu0YpGYJZcpxs3htKzKEY04ox1twU0-gXt87VTTDcsf-aaAA7AldxhP19LvP57Zfzo_UaJc6cGA</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Ishikawa, Masahiro</creator><creator>de Mesy Bentley, Karen L.</creator><creator>McEntire, Bryan J.</creator><creator>Bal, B. Sonny</creator><creator>Schwarz, Edward M.</creator><creator>Xie, Chao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7612-9789</orcidid></search><sort><creationdate>201712</creationdate><title>Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model</title><author>Ishikawa, Masahiro ; de Mesy Bentley, Karen L. ; McEntire, Bryan J. ; Bal, B. Sonny ; Schwarz, Edward M. ; Xie, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4639-ba1bf920457094a5beddfe6cab5e925c47b307d4d60f4b62fab7779c6ac677ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal models</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>Biofilms</topic><topic>Biological effects</topic><topic>Biomedical materials</topic><topic>Bone implants</topic><topic>Drug resistance</topic><topic>Electron microscopy</topic><topic>Macrophages</topic><topic>Mesenchyme</topic><topic>Methicillin</topic><topic>Orthopaedic implants</topic><topic>Osseointegration</topic><topic>osseointegrative</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteomyelitis</topic><topic>Recruitment</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Tibia</topic><topic>Topography</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Masahiro</creatorcontrib><creatorcontrib>de Mesy Bentley, Karen L.</creatorcontrib><creatorcontrib>McEntire, Bryan J.</creatorcontrib><creatorcontrib>Bal, B. Sonny</creatorcontrib><creatorcontrib>Schwarz, Edward M.</creatorcontrib><creatorcontrib>Xie, Chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikawa, Masahiro</au><au>de Mesy Bentley, Karen L.</au><au>McEntire, Bryan J.</au><au>Bal, B. Sonny</au><au>Schwarz, Edward M.</au><au>Xie, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-12</date><risdate>2017</risdate><volume>105</volume><issue>12</issue><spage>3413</spage><epage>3421</epage><pages>3413-3421</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>While silicon nitride (Si3N4) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin‐resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si3N4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant‐associated osteomyelitis. In vitro, the “as‐fired” Si3N4 implants displayed significant reductions in adherent bacteria versus machined Si3N4 (2.6 × 104 vs. 8.7 × 104 CFU, respectively; p &lt; 0.0002). Moreover, SEM imaging demonstrated that MRSA cannot directly adhere to native as‐fired Si3N4. Subsequently, a cross‐sectional study was completed in which sterile or MRSA contaminated as‐fired and machined Si3N4 implants were inserted into the tibiae of 8‐week old female Balb/c mice, and harvested on day 1, 3, 5, 7, 10, or 14 post‐operatively for SEM. The findings demonstrated that the antimicrobial activity of the as‐fired implants resulted from macrophage clearance of the bacteria during biofilm formation on day 1, followed by osseointegration through the apparent recruitment of mesenchymal stem cells on days 3–5, which differentiated into osteoblasts on days 7–14. In contrast, the antimicrobial behavior of the machined Si3N4 was due to repulsion of the bacteria, a phenomenon that also limited osteogenesis, as host cells were also unable to adhere to the machined surface. Taken together, these results suggest that the in vivo biological behavior of Si3N4 orthopaedic implants is driven by critical features of their surface nanotopography. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3413–3421, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28865177</pmid><doi>10.1002/jbm.a.36189</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7612-9789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-12, Vol.105 (12), p.3413-3421
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1936163192
source Wiley Online Library Journals Frontfile Complete
subjects Animal models
Antiinfectives and antibacterials
antimicrobial
Antimicrobial activity
Antimicrobial agents
Bacteria
Biocompatibility
Biofilms
Biological effects
Biomedical materials
Bone implants
Drug resistance
Electron microscopy
Macrophages
Mesenchyme
Methicillin
Orthopaedic implants
Osseointegration
osseointegrative
Osteoblasts
Osteogenesis
Osteomyelitis
Recruitment
Scanning electron microscopy
Scanning transmission electron microscopy
Silicon
Silicon nitride
Staphylococcus aureus
Staphylococcus infections
Stem cell transplantation
Stem cells
Surgical implants
Tibia
Topography
Transplants & implants
title Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20topography%20of%20silicon%20nitride%20affects%20antimicrobial%20and%20osseointegrative%20properties%20of%20tibial%20implants%20in%20a%20murine%20model&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Ishikawa,%20Masahiro&rft.date=2017-12&rft.volume=105&rft.issue=12&rft.spage=3413&rft.epage=3421&rft.pages=3413-3421&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36189&rft_dat=%3Cproquest_cross%3E1956045654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956045654&rft_id=info:pmid/28865177&rfr_iscdi=true