Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation

We demonstrate optical pumping lasers based on colloidal quantum dots, with a very thin geometry consisting of a ≈20 nm thick film. Obstacles in ultrasmall laser devices come from the limitation of gain materials and the size of cavities for lasing modes, which requires a minimum thickness of the ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2017-11, Vol.18 (21), p.2981-2984
Hauptverfasser: Koh, Weon‐kyu, Lee, Jaesoong, Cho, Kyung‐Sang, Roh, Young‐Geun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2984
container_issue 21
container_start_page 2981
container_title Chemphyschem
container_volume 18
creator Koh, Weon‐kyu
Lee, Jaesoong
Cho, Kyung‐Sang
Roh, Young‐Geun
description We demonstrate optical pumping lasers based on colloidal quantum dots, with a very thin geometry consisting of a ≈20 nm thick film. Obstacles in ultrasmall laser devices come from the limitation of gain materials and the size of cavities for lasing modes, which requires a minimum thickness of the gain media (typically greater than 50–100 nm). Here we introduce dielectric waveguide structures with a high refractive index, in order to reduce the thickness of quantum dot gain media as well as their threshold energy (≈39 % compared to the original gain medium). Finite‐difference time‐domain simulations show that the modal confinement factor of thinner quantum dot films can be improved by the presence of an adjacent waveguide layer. We also discuss the possible role of dielectric waveguide layers for efficient heat dissipation during optical pumping. Integrating an extremely thin colloidal quantum dot gain medium into optical waveguides is a promising platform for downscaling on‐chip photonic integrated devices, as well as investigating extreme interactions between light and matter such as surface plasmon–photon coupling. Ultrathin colloidal quantum dot films show optical amplification with the assistance of a TiO2 waveguide as a high refractive index layer. The calculated mode shape provides an understanding of the role of the modal confinement factor for the QD/TiO2 structures, explaining their lower threshold energy with more efficient spontaneous emission.
doi_str_mv 10.1002/cphc.201700726
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936160252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959223134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-4601cc301dbfdc0cb3f940db9a0d5f01d49bc2732db2438b8a0f5e9f629c16093</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0Eoh9w5YgsceGyy_gjTsytSmkXqagtas-R49haV44dYkeo_z1edilSLz3NaOb3nkbzEPpAYE0A6Bc9bfWaAqkBaipeoWPCmVzVgpPXh55TVh2hk5QeAKCBmrxFR7RpBJFcHKN07_Os8tYF3EbvoxuUx7eLCnkZ8XnM-ML5MWEbZ3w9ZafL9mycvLOlzS6Gr_hua_DP6A2OFv-IO3kbg3XBjCZkrMKAN0ZlfO5SctNfzTv0xiqfzPtDPUX3F9_u2s3q6vrye3t2tdKcgFhxAURrBmTo7aBB98xKDkMvFQyVLWMue01rRoeectb0jQJbGWkFlZoIkOwUfd77TnP8tZiUu9ElbbxXwcQldUQyUUBa0YJ-eoY-xGUO5bpCVZJSRhgv1HpP6TmmNBvbTbMb1fzYEeh2cXS7OLqnOIrg48F26UczPOH__l8AuQd-O28eX7Dr2ptN-9_8DwrTlng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959223134</pqid></control><display><type>article</type><title>Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Koh, Weon‐kyu ; Lee, Jaesoong ; Cho, Kyung‐Sang ; Roh, Young‐Geun</creator><creatorcontrib>Koh, Weon‐kyu ; Lee, Jaesoong ; Cho, Kyung‐Sang ; Roh, Young‐Geun</creatorcontrib><description>We demonstrate optical pumping lasers based on colloidal quantum dots, with a very thin geometry consisting of a ≈20 nm thick film. Obstacles in ultrasmall laser devices come from the limitation of gain materials and the size of cavities for lasing modes, which requires a minimum thickness of the gain media (typically greater than 50–100 nm). Here we introduce dielectric waveguide structures with a high refractive index, in order to reduce the thickness of quantum dot gain media as well as their threshold energy (≈39 % compared to the original gain medium). Finite‐difference time‐domain simulations show that the modal confinement factor of thinner quantum dot films can be improved by the presence of an adjacent waveguide layer. We also discuss the possible role of dielectric waveguide layers for efficient heat dissipation during optical pumping. Integrating an extremely thin colloidal quantum dot gain medium into optical waveguides is a promising platform for downscaling on‐chip photonic integrated devices, as well as investigating extreme interactions between light and matter such as surface plasmon–photon coupling. Ultrathin colloidal quantum dot films show optical amplification with the assistance of a TiO2 waveguide as a high refractive index layer. The calculated mode shape provides an understanding of the role of the modal confinement factor for the QD/TiO2 structures, explaining their lower threshold energy with more efficient spontaneous emission.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201700726</identifier><identifier>PMID: 28861946</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>colloidal quantum dots ; Colloids ; Confinement ; Devices ; Dissipation ; Dot gain ; Electrons ; Finite difference method ; heat dissipation ; lasers ; modal confinement ; optical gain ; Optical pumping ; Optical waveguides ; Photonics ; Quantum dots ; Refractivity</subject><ispartof>Chemphyschem, 2017-11, Vol.18 (21), p.2981-2984</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-4601cc301dbfdc0cb3f940db9a0d5f01d49bc2732db2438b8a0f5e9f629c16093</citedby><cites>FETCH-LOGICAL-c4106-4601cc301dbfdc0cb3f940db9a0d5f01d49bc2732db2438b8a0f5e9f629c16093</cites><orcidid>0000-0002-6913-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201700726$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201700726$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28861946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koh, Weon‐kyu</creatorcontrib><creatorcontrib>Lee, Jaesoong</creatorcontrib><creatorcontrib>Cho, Kyung‐Sang</creatorcontrib><creatorcontrib>Roh, Young‐Geun</creatorcontrib><title>Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>We demonstrate optical pumping lasers based on colloidal quantum dots, with a very thin geometry consisting of a ≈20 nm thick film. Obstacles in ultrasmall laser devices come from the limitation of gain materials and the size of cavities for lasing modes, which requires a minimum thickness of the gain media (typically greater than 50–100 nm). Here we introduce dielectric waveguide structures with a high refractive index, in order to reduce the thickness of quantum dot gain media as well as their threshold energy (≈39 % compared to the original gain medium). Finite‐difference time‐domain simulations show that the modal confinement factor of thinner quantum dot films can be improved by the presence of an adjacent waveguide layer. We also discuss the possible role of dielectric waveguide layers for efficient heat dissipation during optical pumping. Integrating an extremely thin colloidal quantum dot gain medium into optical waveguides is a promising platform for downscaling on‐chip photonic integrated devices, as well as investigating extreme interactions between light and matter such as surface plasmon–photon coupling. Ultrathin colloidal quantum dot films show optical amplification with the assistance of a TiO2 waveguide as a high refractive index layer. The calculated mode shape provides an understanding of the role of the modal confinement factor for the QD/TiO2 structures, explaining their lower threshold energy with more efficient spontaneous emission.</description><subject>colloidal quantum dots</subject><subject>Colloids</subject><subject>Confinement</subject><subject>Devices</subject><subject>Dissipation</subject><subject>Dot gain</subject><subject>Electrons</subject><subject>Finite difference method</subject><subject>heat dissipation</subject><subject>lasers</subject><subject>modal confinement</subject><subject>optical gain</subject><subject>Optical pumping</subject><subject>Optical waveguides</subject><subject>Photonics</subject><subject>Quantum dots</subject><subject>Refractivity</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0Eoh9w5YgsceGyy_gjTsytSmkXqagtas-R49haV44dYkeo_z1edilSLz3NaOb3nkbzEPpAYE0A6Bc9bfWaAqkBaipeoWPCmVzVgpPXh55TVh2hk5QeAKCBmrxFR7RpBJFcHKN07_Os8tYF3EbvoxuUx7eLCnkZ8XnM-ML5MWEbZ3w9ZafL9mycvLOlzS6Gr_hua_DP6A2OFv-IO3kbg3XBjCZkrMKAN0ZlfO5SctNfzTv0xiqfzPtDPUX3F9_u2s3q6vrye3t2tdKcgFhxAURrBmTo7aBB98xKDkMvFQyVLWMue01rRoeectb0jQJbGWkFlZoIkOwUfd77TnP8tZiUu9ElbbxXwcQldUQyUUBa0YJ-eoY-xGUO5bpCVZJSRhgv1HpP6TmmNBvbTbMb1fzYEeh2cXS7OLqnOIrg48F26UczPOH__l8AuQd-O28eX7Dr2ptN-9_8DwrTlng</recordid><startdate>20171103</startdate><enddate>20171103</enddate><creator>Koh, Weon‐kyu</creator><creator>Lee, Jaesoong</creator><creator>Cho, Kyung‐Sang</creator><creator>Roh, Young‐Geun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6913-4184</orcidid></search><sort><creationdate>20171103</creationdate><title>Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation</title><author>Koh, Weon‐kyu ; Lee, Jaesoong ; Cho, Kyung‐Sang ; Roh, Young‐Geun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-4601cc301dbfdc0cb3f940db9a0d5f01d49bc2732db2438b8a0f5e9f629c16093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>colloidal quantum dots</topic><topic>Colloids</topic><topic>Confinement</topic><topic>Devices</topic><topic>Dissipation</topic><topic>Dot gain</topic><topic>Electrons</topic><topic>Finite difference method</topic><topic>heat dissipation</topic><topic>lasers</topic><topic>modal confinement</topic><topic>optical gain</topic><topic>Optical pumping</topic><topic>Optical waveguides</topic><topic>Photonics</topic><topic>Quantum dots</topic><topic>Refractivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koh, Weon‐kyu</creatorcontrib><creatorcontrib>Lee, Jaesoong</creatorcontrib><creatorcontrib>Cho, Kyung‐Sang</creatorcontrib><creatorcontrib>Roh, Young‐Geun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koh, Weon‐kyu</au><au>Lee, Jaesoong</au><au>Cho, Kyung‐Sang</au><au>Roh, Young‐Geun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2017-11-03</date><risdate>2017</risdate><volume>18</volume><issue>21</issue><spage>2981</spage><epage>2984</epage><pages>2981-2984</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>We demonstrate optical pumping lasers based on colloidal quantum dots, with a very thin geometry consisting of a ≈20 nm thick film. Obstacles in ultrasmall laser devices come from the limitation of gain materials and the size of cavities for lasing modes, which requires a minimum thickness of the gain media (typically greater than 50–100 nm). Here we introduce dielectric waveguide structures with a high refractive index, in order to reduce the thickness of quantum dot gain media as well as their threshold energy (≈39 % compared to the original gain medium). Finite‐difference time‐domain simulations show that the modal confinement factor of thinner quantum dot films can be improved by the presence of an adjacent waveguide layer. We also discuss the possible role of dielectric waveguide layers for efficient heat dissipation during optical pumping. Integrating an extremely thin colloidal quantum dot gain medium into optical waveguides is a promising platform for downscaling on‐chip photonic integrated devices, as well as investigating extreme interactions between light and matter such as surface plasmon–photon coupling. Ultrathin colloidal quantum dot films show optical amplification with the assistance of a TiO2 waveguide as a high refractive index layer. The calculated mode shape provides an understanding of the role of the modal confinement factor for the QD/TiO2 structures, explaining their lower threshold energy with more efficient spontaneous emission.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28861946</pmid><doi>10.1002/cphc.201700726</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6913-4184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2017-11, Vol.18 (21), p.2981-2984
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_1936160252
source Wiley Online Library Journals Frontfile Complete
subjects colloidal quantum dots
Colloids
Confinement
Devices
Dissipation
Dot gain
Electrons
Finite difference method
heat dissipation
lasers
modal confinement
optical gain
Optical pumping
Optical waveguides
Photonics
Quantum dots
Refractivity
title Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Colloidal%20Quantum%20Dot%20Films%20for%20Optical%20Amplification:%20The%20Role%20of%20Modal%20Confinement%20and%20Heat%20Dissipation&rft.jtitle=Chemphyschem&rft.au=Koh,%20Weon%E2%80%90kyu&rft.date=2017-11-03&rft.volume=18&rft.issue=21&rft.spage=2981&rft.epage=2984&rft.pages=2981-2984&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201700726&rft_dat=%3Cproquest_cross%3E1959223134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959223134&rft_id=info:pmid/28861946&rfr_iscdi=true