Nuclear Translocation of Endonuclease G and Apoptosis-Inducing Factor during Acetaminophen-Induced Liver Cell Injury

Mitochondrial dysfunction and internucleosomal DNA fragmentation are well-recognized features of acetaminophen (AAP)-induced hepatocyte cell death. However, the endonucleases responsible for this effect have not been identified. Apoptosis-inducing factor (AIF) and endonuclease G are nucleases locate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2006-11, Vol.94 (1), p.217-225
Hauptverfasser: Bajt, Mary Lynn, Cover, Cathleen, Lemasters, John J., Jaeschke, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondrial dysfunction and internucleosomal DNA fragmentation are well-recognized features of acetaminophen (AAP)-induced hepatocyte cell death. However, the endonucleases responsible for this effect have not been identified. Apoptosis-inducing factor (AIF) and endonuclease G are nucleases located in the intermembrane space of mitochondria. AIF is thought to trigger chromatin condensation and induce cleavage of DNA into high molecular weight fragments (50–300 kb), and endonuclease G can produce oligonucleosomal DNA fragments. Therefore, the objective of this investigation was to test the hypothesis that endonuclease G and AIF could be involved in AAP-induced nuclear DNA fragmentation. Using immunofluorescence microscopy, it was shown that in primary cultured mouse hepatocytes, endonuclease G and AIF translocated to the nucleus between 3 and 6 h after exposure to 5 mM AAP. In contrast, other mitochondrial intermembrane proteins such as cytochrome c or the second mitochondria-derived activator of caspases (Smac) did not accumulate in the nucleus. The translocation of AIF and endonuclease G correlated with mitochondrial dysfunction as indicated by the progressive loss of the mitochondrial membrane potential (measured with the JC-1 assay) and the appearance of nuclear DNA fragments in the cytosol (determined by an anti-histone ELISA). Pretreatment with 20mM N-acetylcysteine prevented mitochondrial dysfunction, the nuclear translocation of endonuclease G and AIF, and the nuclear DNA fragmentation. The data support the conclusion that endonuclease G and AIF translocate to the nucleus in response to AAP-induced mitochondrial dysfunction and may be responsible, at least in part, for the initial DNA fragmentation during AAP hepatotoxicity.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfl077