Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis

Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2018-01, Vol.24 (1), p.13-22
Hauptverfasser: Stein, Manuel, Janetzko, Halldor, Lamprecht, Andreas, Breitkreutz, Thorsten, Zimmermann, Philipp, Goldlucke, Bastian, Schreck, Tobias, Andrienko, Gennady, Grossniklaus, Michael, Keim, Daniel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 13
container_title IEEE transactions on visualization and computer graphics
container_volume 24
creator Stein, Manuel
Janetzko, Halldor
Lamprecht, Andreas
Breitkreutz, Thorsten
Zimmermann, Philipp
Goldlucke, Bastian
Schreck, Tobias
Andrienko, Gennady
Grossniklaus, Michael
Keim, Daniel A.
description Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.
doi_str_mv 10.1109/TVCG.2017.2745181
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1935404855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019849</ieee_id><sourcerecordid>1974433963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-ABFkwYuX1N3sZj-81VhroaJgrcewSSc2pcnW7FbovzehtQdPMzDPvMw8CF1S0qeU6LvpLB71Q0JlP5Q8oooeoS7VnAYkIuK46YmUQShC0UFnzi0JoZwrfYo6oVJCRFJ10edDXVRfeOyxt9gvAL8VPlvc49iWaVG1o1kxB4tNNccv9gdKqDx-NN60_LBamCoDPAVT4ve1rT0eVGa1dYU7Rye5WTm42Nce-ngaTuPnYPI6GseDSZAxHfpApIIbynOTmzBUYESuIFWCMEIiDlLOdUqEaj7LUspAMJA6klSzKIM8J5yzHrrd5a5r-70B55OycBmsVqYCu3FJy3LCVRQ16M0_dGk3dXNvS8kmi2nBGoruqKy2ztWQJ-u6KE29TShJWutJaz1prSd7683O9T55k5YwP2z8aW6Aqx1QAMBhrAjVimv2C28Hg3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974433963</pqid></control><display><type>article</type><title>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Stein, Manuel ; Janetzko, Halldor ; Lamprecht, Andreas ; Breitkreutz, Thorsten ; Zimmermann, Philipp ; Goldlucke, Bastian ; Schreck, Tobias ; Andrienko, Gennady ; Grossniklaus, Michael ; Keim, Daniel A.</creator><creatorcontrib>Stein, Manuel ; Janetzko, Halldor ; Lamprecht, Andreas ; Breitkreutz, Thorsten ; Zimmermann, Philipp ; Goldlucke, Bastian ; Schreck, Tobias ; Andrienko, Gennady ; Grossniklaus, Michael ; Keim, Daniel A.</creatorcontrib><description>Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2745181</identifier><identifier>PMID: 28866578</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytics ; Computer vision ; Data visualization ; Feature extraction ; Image color analysis ; immersive analytics ; Scientific visualization ; Soccer ; sport analytics ; Trajectory ; Trajectory analysis ; Video data ; visual analytics ; Visual observation ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.13-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</citedby><cites>FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Manuel</creatorcontrib><creatorcontrib>Janetzko, Halldor</creatorcontrib><creatorcontrib>Lamprecht, Andreas</creatorcontrib><creatorcontrib>Breitkreutz, Thorsten</creatorcontrib><creatorcontrib>Zimmermann, Philipp</creatorcontrib><creatorcontrib>Goldlucke, Bastian</creatorcontrib><creatorcontrib>Schreck, Tobias</creatorcontrib><creatorcontrib>Andrienko, Gennady</creatorcontrib><creatorcontrib>Grossniklaus, Michael</creatorcontrib><creatorcontrib>Keim, Daniel A.</creatorcontrib><title>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</description><subject>Analytics</subject><subject>Computer vision</subject><subject>Data visualization</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>immersive analytics</subject><subject>Scientific visualization</subject><subject>Soccer</subject><subject>sport analytics</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Video data</subject><subject>visual analytics</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-ABFkwYuX1N3sZj-81VhroaJgrcewSSc2pcnW7FbovzehtQdPMzDPvMw8CF1S0qeU6LvpLB71Q0JlP5Q8oooeoS7VnAYkIuK46YmUQShC0UFnzi0JoZwrfYo6oVJCRFJ10edDXVRfeOyxt9gvAL8VPlvc49iWaVG1o1kxB4tNNccv9gdKqDx-NN60_LBamCoDPAVT4ve1rT0eVGa1dYU7Rye5WTm42Nce-ngaTuPnYPI6GseDSZAxHfpApIIbynOTmzBUYESuIFWCMEIiDlLOdUqEaj7LUspAMJA6klSzKIM8J5yzHrrd5a5r-70B55OycBmsVqYCu3FJy3LCVRQ16M0_dGk3dXNvS8kmi2nBGoruqKy2ztWQJ-u6KE29TShJWutJaz1prSd7683O9T55k5YwP2z8aW6Aqx1QAMBhrAjVimv2C28Hg3k</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Stein, Manuel</creator><creator>Janetzko, Halldor</creator><creator>Lamprecht, Andreas</creator><creator>Breitkreutz, Thorsten</creator><creator>Zimmermann, Philipp</creator><creator>Goldlucke, Bastian</creator><creator>Schreck, Tobias</creator><creator>Andrienko, Gennady</creator><creator>Grossniklaus, Michael</creator><creator>Keim, Daniel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</title><author>Stein, Manuel ; Janetzko, Halldor ; Lamprecht, Andreas ; Breitkreutz, Thorsten ; Zimmermann, Philipp ; Goldlucke, Bastian ; Schreck, Tobias ; Andrienko, Gennady ; Grossniklaus, Michael ; Keim, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytics</topic><topic>Computer vision</topic><topic>Data visualization</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>immersive analytics</topic><topic>Scientific visualization</topic><topic>Soccer</topic><topic>sport analytics</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Video data</topic><topic>visual analytics</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Manuel</creatorcontrib><creatorcontrib>Janetzko, Halldor</creatorcontrib><creatorcontrib>Lamprecht, Andreas</creatorcontrib><creatorcontrib>Breitkreutz, Thorsten</creatorcontrib><creatorcontrib>Zimmermann, Philipp</creatorcontrib><creatorcontrib>Goldlucke, Bastian</creatorcontrib><creatorcontrib>Schreck, Tobias</creatorcontrib><creatorcontrib>Andrienko, Gennady</creatorcontrib><creatorcontrib>Grossniklaus, Michael</creatorcontrib><creatorcontrib>Keim, Daniel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stein, Manuel</au><au>Janetzko, Halldor</au><au>Lamprecht, Andreas</au><au>Breitkreutz, Thorsten</au><au>Zimmermann, Philipp</au><au>Goldlucke, Bastian</au><au>Schreck, Tobias</au><au>Andrienko, Gennady</au><au>Grossniklaus, Michael</au><au>Keim, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>13</spage><epage>22</epage><pages>13-22</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866578</pmid><doi>10.1109/TVCG.2017.2745181</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.13-22
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1935404855
source IEEE Electronic Library (IEL)
subjects Analytics
Computer vision
Data visualization
Feature extraction
Image color analysis
immersive analytics
Scientific visualization
Soccer
sport analytics
Trajectory
Trajectory analysis
Video data
visual analytics
Visual observation
Visualization
title Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bring%20It%20to%20the%20Pitch:%20Combining%20Video%20and%20Movement%20Data%20to%20Enhance%20Team%20Sport%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Stein,%20Manuel&rft.date=2018-01&rft.volume=24&rft.issue=1&rft.spage=13&rft.epage=22&rft.pages=13-22&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2745181&rft_dat=%3Cproquest_RIE%3E1974433963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974433963&rft_id=info:pmid/28866578&rft_ieee_id=8019849&rfr_iscdi=true