Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis
Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. C...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2018-01, Vol.24 (1), p.13-22 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 24 |
creator | Stein, Manuel Janetzko, Halldor Lamprecht, Andreas Breitkreutz, Thorsten Zimmermann, Philipp Goldlucke, Bastian Schreck, Tobias Andrienko, Gennady Grossniklaus, Michael Keim, Daniel A. |
description | Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach. |
doi_str_mv | 10.1109/TVCG.2017.2745181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1935404855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019849</ieee_id><sourcerecordid>1974433963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-ABFkwYuX1N3sZj-81VhroaJgrcewSSc2pcnW7FbovzehtQdPMzDPvMw8CF1S0qeU6LvpLB71Q0JlP5Q8oooeoS7VnAYkIuK46YmUQShC0UFnzi0JoZwrfYo6oVJCRFJ10edDXVRfeOyxt9gvAL8VPlvc49iWaVG1o1kxB4tNNccv9gdKqDx-NN60_LBamCoDPAVT4ve1rT0eVGa1dYU7Rye5WTm42Nce-ngaTuPnYPI6GseDSZAxHfpApIIbynOTmzBUYESuIFWCMEIiDlLOdUqEaj7LUspAMJA6klSzKIM8J5yzHrrd5a5r-70B55OycBmsVqYCu3FJy3LCVRQ16M0_dGk3dXNvS8kmi2nBGoruqKy2ztWQJ-u6KE29TShJWutJaz1prSd7683O9T55k5YwP2z8aW6Aqx1QAMBhrAjVimv2C28Hg3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974433963</pqid></control><display><type>article</type><title>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Stein, Manuel ; Janetzko, Halldor ; Lamprecht, Andreas ; Breitkreutz, Thorsten ; Zimmermann, Philipp ; Goldlucke, Bastian ; Schreck, Tobias ; Andrienko, Gennady ; Grossniklaus, Michael ; Keim, Daniel A.</creator><creatorcontrib>Stein, Manuel ; Janetzko, Halldor ; Lamprecht, Andreas ; Breitkreutz, Thorsten ; Zimmermann, Philipp ; Goldlucke, Bastian ; Schreck, Tobias ; Andrienko, Gennady ; Grossniklaus, Michael ; Keim, Daniel A.</creatorcontrib><description>Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2745181</identifier><identifier>PMID: 28866578</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytics ; Computer vision ; Data visualization ; Feature extraction ; Image color analysis ; immersive analytics ; Scientific visualization ; Soccer ; sport analytics ; Trajectory ; Trajectory analysis ; Video data ; visual analytics ; Visual observation ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.13-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</citedby><cites>FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Manuel</creatorcontrib><creatorcontrib>Janetzko, Halldor</creatorcontrib><creatorcontrib>Lamprecht, Andreas</creatorcontrib><creatorcontrib>Breitkreutz, Thorsten</creatorcontrib><creatorcontrib>Zimmermann, Philipp</creatorcontrib><creatorcontrib>Goldlucke, Bastian</creatorcontrib><creatorcontrib>Schreck, Tobias</creatorcontrib><creatorcontrib>Andrienko, Gennady</creatorcontrib><creatorcontrib>Grossniklaus, Michael</creatorcontrib><creatorcontrib>Keim, Daniel A.</creatorcontrib><title>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</description><subject>Analytics</subject><subject>Computer vision</subject><subject>Data visualization</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>immersive analytics</subject><subject>Scientific visualization</subject><subject>Soccer</subject><subject>sport analytics</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Video data</subject><subject>visual analytics</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-ABFkwYuX1N3sZj-81VhroaJgrcewSSc2pcnW7FbovzehtQdPMzDPvMw8CF1S0qeU6LvpLB71Q0JlP5Q8oooeoS7VnAYkIuK46YmUQShC0UFnzi0JoZwrfYo6oVJCRFJ10edDXVRfeOyxt9gvAL8VPlvc49iWaVG1o1kxB4tNNccv9gdKqDx-NN60_LBamCoDPAVT4ve1rT0eVGa1dYU7Rye5WTm42Nce-ngaTuPnYPI6GseDSZAxHfpApIIbynOTmzBUYESuIFWCMEIiDlLOdUqEaj7LUspAMJA6klSzKIM8J5yzHrrd5a5r-70B55OycBmsVqYCu3FJy3LCVRQ16M0_dGk3dXNvS8kmi2nBGoruqKy2ztWQJ-u6KE29TShJWutJaz1prSd7683O9T55k5YwP2z8aW6Aqx1QAMBhrAjVimv2C28Hg3k</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Stein, Manuel</creator><creator>Janetzko, Halldor</creator><creator>Lamprecht, Andreas</creator><creator>Breitkreutz, Thorsten</creator><creator>Zimmermann, Philipp</creator><creator>Goldlucke, Bastian</creator><creator>Schreck, Tobias</creator><creator>Andrienko, Gennady</creator><creator>Grossniklaus, Michael</creator><creator>Keim, Daniel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</title><author>Stein, Manuel ; Janetzko, Halldor ; Lamprecht, Andreas ; Breitkreutz, Thorsten ; Zimmermann, Philipp ; Goldlucke, Bastian ; Schreck, Tobias ; Andrienko, Gennady ; Grossniklaus, Michael ; Keim, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6b64a14fafa228ea6f8eb86030054e77d9b068181cb13e63e79571935ceff0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytics</topic><topic>Computer vision</topic><topic>Data visualization</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>immersive analytics</topic><topic>Scientific visualization</topic><topic>Soccer</topic><topic>sport analytics</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Video data</topic><topic>visual analytics</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Manuel</creatorcontrib><creatorcontrib>Janetzko, Halldor</creatorcontrib><creatorcontrib>Lamprecht, Andreas</creatorcontrib><creatorcontrib>Breitkreutz, Thorsten</creatorcontrib><creatorcontrib>Zimmermann, Philipp</creatorcontrib><creatorcontrib>Goldlucke, Bastian</creatorcontrib><creatorcontrib>Schreck, Tobias</creatorcontrib><creatorcontrib>Andrienko, Gennady</creatorcontrib><creatorcontrib>Grossniklaus, Michael</creatorcontrib><creatorcontrib>Keim, Daniel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stein, Manuel</au><au>Janetzko, Halldor</au><au>Lamprecht, Andreas</au><au>Breitkreutz, Thorsten</au><au>Zimmermann, Philipp</au><au>Goldlucke, Bastian</au><au>Schreck, Tobias</au><au>Andrienko, Gennady</au><au>Grossniklaus, Michael</au><au>Keim, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>13</spage><epage>22</epage><pages>13-22</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866578</pmid><doi>10.1109/TVCG.2017.2745181</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.13-22 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_1935404855 |
source | IEEE Electronic Library (IEL) |
subjects | Analytics Computer vision Data visualization Feature extraction Image color analysis immersive analytics Scientific visualization Soccer sport analytics Trajectory Trajectory analysis Video data visual analytics Visual observation Visualization |
title | Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bring%20It%20to%20the%20Pitch:%20Combining%20Video%20and%20Movement%20Data%20to%20Enhance%20Team%20Sport%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Stein,%20Manuel&rft.date=2018-01&rft.volume=24&rft.issue=1&rft.spage=13&rft.epage=22&rft.pages=13-22&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2745181&rft_dat=%3Cproquest_RIE%3E1974433963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974433963&rft_id=info:pmid/28866578&rft_ieee_id=8019849&rfr_iscdi=true |