Computational medical imaging (radiomics) and potential for immuno-oncology

The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a majo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer radiothérapie 2017-10, Vol.21 (6-7), p.648-654
Hauptverfasser: Sun, R, Limkin, E J, Dercle, L, Reuzé, S, Zacharaki, E I, Chargari, C, Schernberg, A, Dirand, A S, Alexis, A, Paragios, N, Deutsch, É, Ferté, C, Robert, C
Format: Artikel
Sprache:fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 654
container_issue 6-7
container_start_page 648
container_title Cancer radiothérapie
container_volume 21
creator Sun, R
Limkin, E J
Dercle, L
Reuzé, S
Zacharaki, E I
Chargari, C
Schernberg, A
Dirand, A S
Alexis, A
Paragios, N
Deutsch, É
Ferté, C
Robert, C
description The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.
doi_str_mv 10.1016/j.canrad.2017.07.035
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1935384736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935384736</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-a10c5bca8ac657449a9010488f6ff8106db1428964fb58094b8de84d186950003</originalsourceid><addsrcrecordid>eNo1kE1LxDAURYMgzjj6D0S6HBetSZu8viyl-IUDbnRd0jQtGdqkNu1i_r0BR3hwN4fLPY-QO0YzRhk8HjOt3KzaLKeszGi8QlyQLStBpgACN-Q6hCOlFECKK7LJEUFIwC35qPw4rYtarHdqSEbTWh3Tjqq3rk_2sdT60erwkCjXJpNfjFtsJDo_R2pcnU-9037w_emGXHZqCOb2nDvy_fL8Vb2lh8_X9-rpkE6MsyVVjGrRaIVKgyg5l0pSRjliB12HjELbMJ6jBN41AqnkDbYGecswjo8OxY7s_3qn2f-sJiz1aIM2w6Cc8WuomSxEgbwsIKL3Z3Rtols9zdFsPtX_Dyh-AQEpXKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935384736</pqid></control><display><type>article</type><title>Computational medical imaging (radiomics) and potential for immuno-oncology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, R ; Limkin, E J ; Dercle, L ; Reuzé, S ; Zacharaki, E I ; Chargari, C ; Schernberg, A ; Dirand, A S ; Alexis, A ; Paragios, N ; Deutsch, É ; Ferté, C ; Robert, C</creator><creatorcontrib>Sun, R ; Limkin, E J ; Dercle, L ; Reuzé, S ; Zacharaki, E I ; Chargari, C ; Schernberg, A ; Dirand, A S ; Alexis, A ; Paragios, N ; Deutsch, É ; Ferté, C ; Robert, C</creatorcontrib><description>The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.</description><identifier>EISSN: 1769-6658</identifier><identifier>DOI: 10.1016/j.canrad.2017.07.035</identifier><identifier>PMID: 28865968</identifier><language>fre</language><publisher>France</publisher><subject>Humans ; Image Processing, Computer-Assisted ; Immunotherapy ; Neoplasms - diagnostic imaging ; Neoplasms - therapy</subject><ispartof>Cancer radiothérapie, 2017-10, Vol.21 (6-7), p.648-654</ispartof><rights>Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28865968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, R</creatorcontrib><creatorcontrib>Limkin, E J</creatorcontrib><creatorcontrib>Dercle, L</creatorcontrib><creatorcontrib>Reuzé, S</creatorcontrib><creatorcontrib>Zacharaki, E I</creatorcontrib><creatorcontrib>Chargari, C</creatorcontrib><creatorcontrib>Schernberg, A</creatorcontrib><creatorcontrib>Dirand, A S</creatorcontrib><creatorcontrib>Alexis, A</creatorcontrib><creatorcontrib>Paragios, N</creatorcontrib><creatorcontrib>Deutsch, É</creatorcontrib><creatorcontrib>Ferté, C</creatorcontrib><creatorcontrib>Robert, C</creatorcontrib><title>Computational medical imaging (radiomics) and potential for immuno-oncology</title><title>Cancer radiothérapie</title><addtitle>Cancer Radiother</addtitle><description>The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.</description><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunotherapy</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - therapy</subject><issn>1769-6658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1LxDAURYMgzjj6D0S6HBetSZu8viyl-IUDbnRd0jQtGdqkNu1i_r0BR3hwN4fLPY-QO0YzRhk8HjOt3KzaLKeszGi8QlyQLStBpgACN-Q6hCOlFECKK7LJEUFIwC35qPw4rYtarHdqSEbTWh3Tjqq3rk_2sdT60erwkCjXJpNfjFtsJDo_R2pcnU-9037w_emGXHZqCOb2nDvy_fL8Vb2lh8_X9-rpkE6MsyVVjGrRaIVKgyg5l0pSRjliB12HjELbMJ6jBN41AqnkDbYGecswjo8OxY7s_3qn2f-sJiz1aIM2w6Cc8WuomSxEgbwsIKL3Z3Rtols9zdFsPtX_Dyh-AQEpXKk</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Sun, R</creator><creator>Limkin, E J</creator><creator>Dercle, L</creator><creator>Reuzé, S</creator><creator>Zacharaki, E I</creator><creator>Chargari, C</creator><creator>Schernberg, A</creator><creator>Dirand, A S</creator><creator>Alexis, A</creator><creator>Paragios, N</creator><creator>Deutsch, É</creator><creator>Ferté, C</creator><creator>Robert, C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Computational medical imaging (radiomics) and potential for immuno-oncology</title><author>Sun, R ; Limkin, E J ; Dercle, L ; Reuzé, S ; Zacharaki, E I ; Chargari, C ; Schernberg, A ; Dirand, A S ; Alexis, A ; Paragios, N ; Deutsch, É ; Ferté, C ; Robert, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-a10c5bca8ac657449a9010488f6ff8106db1428964fb58094b8de84d186950003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>fre</language><creationdate>2017</creationdate><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunotherapy</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, R</creatorcontrib><creatorcontrib>Limkin, E J</creatorcontrib><creatorcontrib>Dercle, L</creatorcontrib><creatorcontrib>Reuzé, S</creatorcontrib><creatorcontrib>Zacharaki, E I</creatorcontrib><creatorcontrib>Chargari, C</creatorcontrib><creatorcontrib>Schernberg, A</creatorcontrib><creatorcontrib>Dirand, A S</creatorcontrib><creatorcontrib>Alexis, A</creatorcontrib><creatorcontrib>Paragios, N</creatorcontrib><creatorcontrib>Deutsch, É</creatorcontrib><creatorcontrib>Ferté, C</creatorcontrib><creatorcontrib>Robert, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer radiothérapie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, R</au><au>Limkin, E J</au><au>Dercle, L</au><au>Reuzé, S</au><au>Zacharaki, E I</au><au>Chargari, C</au><au>Schernberg, A</au><au>Dirand, A S</au><au>Alexis, A</au><au>Paragios, N</au><au>Deutsch, É</au><au>Ferté, C</au><au>Robert, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational medical imaging (radiomics) and potential for immuno-oncology</atitle><jtitle>Cancer radiothérapie</jtitle><addtitle>Cancer Radiother</addtitle><date>2017-10</date><risdate>2017</risdate><volume>21</volume><issue>6-7</issue><spage>648</spage><epage>654</epage><pages>648-654</pages><eissn>1769-6658</eissn><abstract>The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.</abstract><cop>France</cop><pmid>28865968</pmid><doi>10.1016/j.canrad.2017.07.035</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1769-6658
ispartof Cancer radiothérapie, 2017-10, Vol.21 (6-7), p.648-654
issn 1769-6658
language fre
recordid cdi_proquest_miscellaneous_1935384736
source MEDLINE; Elsevier ScienceDirect Journals
subjects Humans
Image Processing, Computer-Assisted
Immunotherapy
Neoplasms - diagnostic imaging
Neoplasms - therapy
title Computational medical imaging (radiomics) and potential for immuno-oncology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20medical%20imaging%20(radiomics)%20and%20potential%20for%20immuno-oncology&rft.jtitle=Cancer%20radioth%C3%A9rapie&rft.au=Sun,%20R&rft.date=2017-10&rft.volume=21&rft.issue=6-7&rft.spage=648&rft.epage=654&rft.pages=648-654&rft.eissn=1769-6658&rft_id=info:doi/10.1016/j.canrad.2017.07.035&rft_dat=%3Cproquest_pubme%3E1935384736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935384736&rft_id=info:pmid/28865968&rfr_iscdi=true