Computational medical imaging (radiomics) and potential for immuno-oncology
The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a majo...
Gespeichert in:
Veröffentlicht in: | Cancer radiothérapie 2017-10, Vol.21 (6-7), p.648-654 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 654 |
---|---|
container_issue | 6-7 |
container_start_page | 648 |
container_title | Cancer radiothérapie |
container_volume | 21 |
creator | Sun, R Limkin, E J Dercle, L Reuzé, S Zacharaki, E I Chargari, C Schernberg, A Dirand, A S Alexis, A Paragios, N Deutsch, É Ferté, C Robert, C |
description | The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology. |
doi_str_mv | 10.1016/j.canrad.2017.07.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1935384736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935384736</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-a10c5bca8ac657449a9010488f6ff8106db1428964fb58094b8de84d186950003</originalsourceid><addsrcrecordid>eNo1kE1LxDAURYMgzjj6D0S6HBetSZu8viyl-IUDbnRd0jQtGdqkNu1i_r0BR3hwN4fLPY-QO0YzRhk8HjOt3KzaLKeszGi8QlyQLStBpgACN-Q6hCOlFECKK7LJEUFIwC35qPw4rYtarHdqSEbTWh3Tjqq3rk_2sdT60erwkCjXJpNfjFtsJDo_R2pcnU-9037w_emGXHZqCOb2nDvy_fL8Vb2lh8_X9-rpkE6MsyVVjGrRaIVKgyg5l0pSRjliB12HjELbMJ6jBN41AqnkDbYGecswjo8OxY7s_3qn2f-sJiz1aIM2w6Cc8WuomSxEgbwsIKL3Z3Rtols9zdFsPtX_Dyh-AQEpXKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935384736</pqid></control><display><type>article</type><title>Computational medical imaging (radiomics) and potential for immuno-oncology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, R ; Limkin, E J ; Dercle, L ; Reuzé, S ; Zacharaki, E I ; Chargari, C ; Schernberg, A ; Dirand, A S ; Alexis, A ; Paragios, N ; Deutsch, É ; Ferté, C ; Robert, C</creator><creatorcontrib>Sun, R ; Limkin, E J ; Dercle, L ; Reuzé, S ; Zacharaki, E I ; Chargari, C ; Schernberg, A ; Dirand, A S ; Alexis, A ; Paragios, N ; Deutsch, É ; Ferté, C ; Robert, C</creatorcontrib><description>The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.</description><identifier>EISSN: 1769-6658</identifier><identifier>DOI: 10.1016/j.canrad.2017.07.035</identifier><identifier>PMID: 28865968</identifier><language>fre</language><publisher>France</publisher><subject>Humans ; Image Processing, Computer-Assisted ; Immunotherapy ; Neoplasms - diagnostic imaging ; Neoplasms - therapy</subject><ispartof>Cancer radiothérapie, 2017-10, Vol.21 (6-7), p.648-654</ispartof><rights>Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28865968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, R</creatorcontrib><creatorcontrib>Limkin, E J</creatorcontrib><creatorcontrib>Dercle, L</creatorcontrib><creatorcontrib>Reuzé, S</creatorcontrib><creatorcontrib>Zacharaki, E I</creatorcontrib><creatorcontrib>Chargari, C</creatorcontrib><creatorcontrib>Schernberg, A</creatorcontrib><creatorcontrib>Dirand, A S</creatorcontrib><creatorcontrib>Alexis, A</creatorcontrib><creatorcontrib>Paragios, N</creatorcontrib><creatorcontrib>Deutsch, É</creatorcontrib><creatorcontrib>Ferté, C</creatorcontrib><creatorcontrib>Robert, C</creatorcontrib><title>Computational medical imaging (radiomics) and potential for immuno-oncology</title><title>Cancer radiothérapie</title><addtitle>Cancer Radiother</addtitle><description>The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.</description><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunotherapy</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - therapy</subject><issn>1769-6658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1LxDAURYMgzjj6D0S6HBetSZu8viyl-IUDbnRd0jQtGdqkNu1i_r0BR3hwN4fLPY-QO0YzRhk8HjOt3KzaLKeszGi8QlyQLStBpgACN-Q6hCOlFECKK7LJEUFIwC35qPw4rYtarHdqSEbTWh3Tjqq3rk_2sdT60erwkCjXJpNfjFtsJDo_R2pcnU-9037w_emGXHZqCOb2nDvy_fL8Vb2lh8_X9-rpkE6MsyVVjGrRaIVKgyg5l0pSRjliB12HjELbMJ6jBN41AqnkDbYGecswjo8OxY7s_3qn2f-sJiz1aIM2w6Cc8WuomSxEgbwsIKL3Z3Rtols9zdFsPtX_Dyh-AQEpXKk</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Sun, R</creator><creator>Limkin, E J</creator><creator>Dercle, L</creator><creator>Reuzé, S</creator><creator>Zacharaki, E I</creator><creator>Chargari, C</creator><creator>Schernberg, A</creator><creator>Dirand, A S</creator><creator>Alexis, A</creator><creator>Paragios, N</creator><creator>Deutsch, É</creator><creator>Ferté, C</creator><creator>Robert, C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Computational medical imaging (radiomics) and potential for immuno-oncology</title><author>Sun, R ; Limkin, E J ; Dercle, L ; Reuzé, S ; Zacharaki, E I ; Chargari, C ; Schernberg, A ; Dirand, A S ; Alexis, A ; Paragios, N ; Deutsch, É ; Ferté, C ; Robert, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-a10c5bca8ac657449a9010488f6ff8106db1428964fb58094b8de84d186950003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>fre</language><creationdate>2017</creationdate><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunotherapy</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, R</creatorcontrib><creatorcontrib>Limkin, E J</creatorcontrib><creatorcontrib>Dercle, L</creatorcontrib><creatorcontrib>Reuzé, S</creatorcontrib><creatorcontrib>Zacharaki, E I</creatorcontrib><creatorcontrib>Chargari, C</creatorcontrib><creatorcontrib>Schernberg, A</creatorcontrib><creatorcontrib>Dirand, A S</creatorcontrib><creatorcontrib>Alexis, A</creatorcontrib><creatorcontrib>Paragios, N</creatorcontrib><creatorcontrib>Deutsch, É</creatorcontrib><creatorcontrib>Ferté, C</creatorcontrib><creatorcontrib>Robert, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer radiothérapie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, R</au><au>Limkin, E J</au><au>Dercle, L</au><au>Reuzé, S</au><au>Zacharaki, E I</au><au>Chargari, C</au><au>Schernberg, A</au><au>Dirand, A S</au><au>Alexis, A</au><au>Paragios, N</au><au>Deutsch, É</au><au>Ferté, C</au><au>Robert, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational medical imaging (radiomics) and potential for immuno-oncology</atitle><jtitle>Cancer radiothérapie</jtitle><addtitle>Cancer Radiother</addtitle><date>2017-10</date><risdate>2017</risdate><volume>21</volume><issue>6-7</issue><spage>648</spage><epage>654</epage><pages>648-654</pages><eissn>1769-6658</eissn><abstract>The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.</abstract><cop>France</cop><pmid>28865968</pmid><doi>10.1016/j.canrad.2017.07.035</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1769-6658 |
ispartof | Cancer radiothérapie, 2017-10, Vol.21 (6-7), p.648-654 |
issn | 1769-6658 |
language | fre |
recordid | cdi_proquest_miscellaneous_1935384736 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Humans Image Processing, Computer-Assisted Immunotherapy Neoplasms - diagnostic imaging Neoplasms - therapy |
title | Computational medical imaging (radiomics) and potential for immuno-oncology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20medical%20imaging%20(radiomics)%20and%20potential%20for%20immuno-oncology&rft.jtitle=Cancer%20radioth%C3%A9rapie&rft.au=Sun,%20R&rft.date=2017-10&rft.volume=21&rft.issue=6-7&rft.spage=648&rft.epage=654&rft.pages=648-654&rft.eissn=1769-6658&rft_id=info:doi/10.1016/j.canrad.2017.07.035&rft_dat=%3Cproquest_pubme%3E1935384736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935384736&rft_id=info:pmid/28865968&rfr_iscdi=true |