Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces

Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular informatics 2017-12, Vol.36 (12), p.n/a
Hauptverfasser: Maeda, Iwao, Hasegawa, Kiyoshi, Kaneko, Hiromasa, Funatsu, Kimito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Molecular informatics
container_volume 36
creator Maeda, Iwao
Hasegawa, Kiyoshi
Kaneko, Hiromasa
Funatsu, Kimito
description Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces. For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.
doi_str_mv 10.1002/minf.201700075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1934280093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974925975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3655-e5ae21807d2b45f812aa569801e481b7362298b16021139a6380eac4dd9149d83</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgSgCVkZkiYWlxY84sUcoT6k8JGCOnOSGGiVxsZ1W_HtcCq3EwnQ9fD66ugehI0pGlBB21pquHjFCM0JIJrbQHpWpHNJM0O31O-EDdOj9eySEszSTahcNmJQiKr6HwoOdQ4PvIUxthZ-cnVlvujc8nkJrSt3g5-D6MvQOPF6YMMWX4I3TRQNLXJs4bY3Py2DmJpiILrSHCttuk6C77-AApsPPM12CP0A7tW48HP7MffR6ffUyvh1OHm_uxueTYclTIYYgNDAqSVaxIhG1pExrkSpJKCSSFhlPGVOyoClhlHKlUy4J6DKpKkUTVUm-j05XuTNnP3rwIW-NL6FpdAe29zlVPGGSEMUjPflD323vurhdVFmimFCZiGq0UqWz3juo85kzrXafOSX5spJ8WUm-riR-OP6J7YsWqjX_LSACtQKLeMrPf-Ly-7uH6034F1qolqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974925975</pqid></control><display><type>article</type><title>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maeda, Iwao ; Hasegawa, Kiyoshi ; Kaneko, Hiromasa ; Funatsu, Kimito</creator><creatorcontrib>Maeda, Iwao ; Hasegawa, Kiyoshi ; Kaneko, Hiromasa ; Funatsu, Kimito</creatorcontrib><description>Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces. For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201700075</identifier><identifier>PMID: 28857513</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Case studies ; Cheminformatics ; Compound−protein interactions ; Drug design ; Drug development ; Ion channels ; Kinases ; Mathematical models ; Neural network ; Neural networks ; Prediction models ; Protein families ; Protein interaction ; Proteins ; Receptors ; Side effects ; Virtual screening ; Visualization</subject><ispartof>Molecular informatics, 2017-12, Vol.36 (12), p.n/a</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3655-e5ae21807d2b45f812aa569801e481b7362298b16021139a6380eac4dd9149d83</cites><orcidid>0000-0002-3979-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201700075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201700075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28857513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Iwao</creatorcontrib><creatorcontrib>Hasegawa, Kiyoshi</creatorcontrib><creatorcontrib>Kaneko, Hiromasa</creatorcontrib><creatorcontrib>Funatsu, Kimito</creatorcontrib><title>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</title><title>Molecular informatics</title><addtitle>Mol Inform</addtitle><description>Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces. For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.</description><subject>Case studies</subject><subject>Cheminformatics</subject><subject>Compound−protein interactions</subject><subject>Drug design</subject><subject>Drug development</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Protein families</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Side effects</subject><subject>Virtual screening</subject><subject>Visualization</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPwzAUBWALgSgCVkZkiYWlxY84sUcoT6k8JGCOnOSGGiVxsZ1W_HtcCq3EwnQ9fD66ugehI0pGlBB21pquHjFCM0JIJrbQHpWpHNJM0O31O-EDdOj9eySEszSTahcNmJQiKr6HwoOdQ4PvIUxthZ-cnVlvujc8nkJrSt3g5-D6MvQOPF6YMMWX4I3TRQNLXJs4bY3Py2DmJpiILrSHCttuk6C77-AApsPPM12CP0A7tW48HP7MffR6ffUyvh1OHm_uxueTYclTIYYgNDAqSVaxIhG1pExrkSpJKCSSFhlPGVOyoClhlHKlUy4J6DKpKkUTVUm-j05XuTNnP3rwIW-NL6FpdAe29zlVPGGSEMUjPflD323vurhdVFmimFCZiGq0UqWz3juo85kzrXafOSX5spJ8WUm-riR-OP6J7YsWqjX_LSACtQKLeMrPf-Ly-7uH6034F1qolqw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Maeda, Iwao</creator><creator>Hasegawa, Kiyoshi</creator><creator>Kaneko, Hiromasa</creator><creator>Funatsu, Kimito</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3979-3218</orcidid></search><sort><creationdate>201712</creationdate><title>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</title><author>Maeda, Iwao ; Hasegawa, Kiyoshi ; Kaneko, Hiromasa ; Funatsu, Kimito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3655-e5ae21807d2b45f812aa569801e481b7362298b16021139a6380eac4dd9149d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case studies</topic><topic>Cheminformatics</topic><topic>Compound−protein interactions</topic><topic>Drug design</topic><topic>Drug development</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Protein families</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Side effects</topic><topic>Virtual screening</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Iwao</creatorcontrib><creatorcontrib>Hasegawa, Kiyoshi</creatorcontrib><creatorcontrib>Kaneko, Hiromasa</creatorcontrib><creatorcontrib>Funatsu, Kimito</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Iwao</au><au>Hasegawa, Kiyoshi</au><au>Kaneko, Hiromasa</au><au>Funatsu, Kimito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol Inform</addtitle><date>2017-12</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><epage>n/a</epage><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces. For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28857513</pmid><doi>10.1002/minf.201700075</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3979-3218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-1743
ispartof Molecular informatics, 2017-12, Vol.36 (12), p.n/a
issn 1868-1743
1868-1751
language eng
recordid cdi_proquest_miscellaneous_1934280093
source Wiley Online Library Journals Frontfile Complete
subjects Case studies
Cheminformatics
Compound−protein interactions
Drug design
Drug development
Ion channels
Kinases
Mathematical models
Neural network
Neural networks
Prediction models
Protein families
Protein interaction
Proteins
Receptors
Side effects
Virtual screening
Visualization
title Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Method%20Proposing%20Chemical%20Structures%20with%20Desirable%20Profile%20of%20Activities%20Based%20on%20Chemical%20and%20Protein%20Spaces&rft.jtitle=Molecular%20informatics&rft.au=Maeda,%20Iwao&rft.date=2017-12&rft.volume=36&rft.issue=12&rft.epage=n/a&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201700075&rft_dat=%3Cproquest_cross%3E1974925975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974925975&rft_id=info:pmid/28857513&rfr_iscdi=true