Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces
Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act s...
Gespeichert in:
Veröffentlicht in: | Molecular informatics 2017-12, Vol.36 (12), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Molecular informatics |
container_volume | 36 |
creator | Maeda, Iwao Hasegawa, Kiyoshi Kaneko, Hiromasa Funatsu, Kimito |
description | Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces.
For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters. |
doi_str_mv | 10.1002/minf.201700075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1934280093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974925975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3655-e5ae21807d2b45f812aa569801e481b7362298b16021139a6380eac4dd9149d83</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgSgCVkZkiYWlxY84sUcoT6k8JGCOnOSGGiVxsZ1W_HtcCq3EwnQ9fD66ugehI0pGlBB21pquHjFCM0JIJrbQHpWpHNJM0O31O-EDdOj9eySEszSTahcNmJQiKr6HwoOdQ4PvIUxthZ-cnVlvujc8nkJrSt3g5-D6MvQOPF6YMMWX4I3TRQNLXJs4bY3Py2DmJpiILrSHCttuk6C77-AApsPPM12CP0A7tW48HP7MffR6ffUyvh1OHm_uxueTYclTIYYgNDAqSVaxIhG1pExrkSpJKCSSFhlPGVOyoClhlHKlUy4J6DKpKkUTVUm-j05XuTNnP3rwIW-NL6FpdAe29zlVPGGSEMUjPflD323vurhdVFmimFCZiGq0UqWz3juo85kzrXafOSX5spJ8WUm-riR-OP6J7YsWqjX_LSACtQKLeMrPf-Ly-7uH6034F1qolqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974925975</pqid></control><display><type>article</type><title>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maeda, Iwao ; Hasegawa, Kiyoshi ; Kaneko, Hiromasa ; Funatsu, Kimito</creator><creatorcontrib>Maeda, Iwao ; Hasegawa, Kiyoshi ; Kaneko, Hiromasa ; Funatsu, Kimito</creatorcontrib><description>Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces.
For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201700075</identifier><identifier>PMID: 28857513</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Case studies ; Cheminformatics ; Compound−protein interactions ; Drug design ; Drug development ; Ion channels ; Kinases ; Mathematical models ; Neural network ; Neural networks ; Prediction models ; Protein families ; Protein interaction ; Proteins ; Receptors ; Side effects ; Virtual screening ; Visualization</subject><ispartof>Molecular informatics, 2017-12, Vol.36 (12), p.n/a</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3655-e5ae21807d2b45f812aa569801e481b7362298b16021139a6380eac4dd9149d83</cites><orcidid>0000-0002-3979-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201700075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201700075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28857513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Iwao</creatorcontrib><creatorcontrib>Hasegawa, Kiyoshi</creatorcontrib><creatorcontrib>Kaneko, Hiromasa</creatorcontrib><creatorcontrib>Funatsu, Kimito</creatorcontrib><title>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</title><title>Molecular informatics</title><addtitle>Mol Inform</addtitle><description>Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces.
For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.</description><subject>Case studies</subject><subject>Cheminformatics</subject><subject>Compound−protein interactions</subject><subject>Drug design</subject><subject>Drug development</subject><subject>Ion channels</subject><subject>Kinases</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Protein families</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Side effects</subject><subject>Virtual screening</subject><subject>Visualization</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPwzAUBWALgSgCVkZkiYWlxY84sUcoT6k8JGCOnOSGGiVxsZ1W_HtcCq3EwnQ9fD66ugehI0pGlBB21pquHjFCM0JIJrbQHpWpHNJM0O31O-EDdOj9eySEszSTahcNmJQiKr6HwoOdQ4PvIUxthZ-cnVlvujc8nkJrSt3g5-D6MvQOPF6YMMWX4I3TRQNLXJs4bY3Py2DmJpiILrSHCttuk6C77-AApsPPM12CP0A7tW48HP7MffR6ffUyvh1OHm_uxueTYclTIYYgNDAqSVaxIhG1pExrkSpJKCSSFhlPGVOyoClhlHKlUy4J6DKpKkUTVUm-j05XuTNnP3rwIW-NL6FpdAe29zlVPGGSEMUjPflD323vurhdVFmimFCZiGq0UqWz3juo85kzrXafOSX5spJ8WUm-riR-OP6J7YsWqjX_LSACtQKLeMrPf-Ly-7uH6034F1qolqw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Maeda, Iwao</creator><creator>Hasegawa, Kiyoshi</creator><creator>Kaneko, Hiromasa</creator><creator>Funatsu, Kimito</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3979-3218</orcidid></search><sort><creationdate>201712</creationdate><title>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</title><author>Maeda, Iwao ; Hasegawa, Kiyoshi ; Kaneko, Hiromasa ; Funatsu, Kimito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3655-e5ae21807d2b45f812aa569801e481b7362298b16021139a6380eac4dd9149d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case studies</topic><topic>Cheminformatics</topic><topic>Compound−protein interactions</topic><topic>Drug design</topic><topic>Drug development</topic><topic>Ion channels</topic><topic>Kinases</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Protein families</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Side effects</topic><topic>Virtual screening</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Iwao</creatorcontrib><creatorcontrib>Hasegawa, Kiyoshi</creatorcontrib><creatorcontrib>Kaneko, Hiromasa</creatorcontrib><creatorcontrib>Funatsu, Kimito</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Iwao</au><au>Hasegawa, Kiyoshi</au><au>Kaneko, Hiromasa</au><au>Funatsu, Kimito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol Inform</addtitle><date>2017-12</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><epage>n/a</epage><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces.
For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi‐input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G‐protein coupled receptors, ion channels and transporters.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28857513</pmid><doi>10.1002/minf.201700075</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3979-3218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-1743 |
ispartof | Molecular informatics, 2017-12, Vol.36 (12), p.n/a |
issn | 1868-1743 1868-1751 |
language | eng |
recordid | cdi_proquest_miscellaneous_1934280093 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Case studies Cheminformatics Compound−protein interactions Drug design Drug development Ion channels Kinases Mathematical models Neural network Neural networks Prediction models Protein families Protein interaction Proteins Receptors Side effects Virtual screening Visualization |
title | Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Method%20Proposing%20Chemical%20Structures%20with%20Desirable%20Profile%20of%20Activities%20Based%20on%20Chemical%20and%20Protein%20Spaces&rft.jtitle=Molecular%20informatics&rft.au=Maeda,%20Iwao&rft.date=2017-12&rft.volume=36&rft.issue=12&rft.epage=n/a&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201700075&rft_dat=%3Cproquest_cross%3E1974925975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974925975&rft_id=info:pmid/28857513&rfr_iscdi=true |