Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation

To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2017-10, Vol.89, p.275-281
Hauptverfasser: Barbosa, E. Mortani, Simpson, S., Lee, J.C., Tustison, N., Gee, J., Shou, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue
container_start_page 275
container_title Computers in biology and medicine
container_volume 89
creator Barbosa, E. Mortani
Simpson, S.
Lee, J.C.
Tustison, N.
Gee, J.
Shou, H.
description To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral). Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task. MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types. Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx. •BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.
doi_str_mv 10.1016/j.compbiomed.2017.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933941748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482517302755</els_id><sourcerecordid>1933941748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EotvCKyBLXLgkjBMnto-wKlCpiEs5W44zLl4l8dZ2Ku2D8L442lZIXLh45Pk_-x_7J4QyqBmw_uOhtmE-Dj7MONYNMFGDrIvwguyYFKqCruUvyQ6AQcVl012Qy5QOAMChhdfkopGyA6nUjvz-vk7ZP5roTUY6hxEnv9zTNW3rw2qW7LMpANL9HZ0xR28Tnc2J-vkYQ2kba9do7IkGR0dv7peQfNo2QwyL_eXD5PPWGErFaJZE02kZY5mcGlc6dFqLU96U41TsillY3pBXzkwJ3z7VK_Lzy_Xd_lt1--Przf7TbWU5NLmywvTtqIyyg2SuabEXTqpOKaEGhFHx1gjuOomj48KpXkrVDwKbfnANgOXtFflwvre85WHFlPXsk8WpDIJhTZqptlWcCS4L-v4f9BDWuJTpCtXxtu-bRhVKnikbQ0oRnT5GP5t40gz0Fp0-6L_R6S06DVIXoRx992SwDpv2fPA5qwJ8PgNYfuTRY9TJelwsjj6izXoM_v8ufwCdK7PK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954366229</pqid></control><display><type>article</type><title>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Barbosa, E. Mortani ; Simpson, S. ; Lee, J.C. ; Tustison, N. ; Gee, J. ; Shou, H.</creator><creatorcontrib>Barbosa, E. Mortani ; Simpson, S. ; Lee, J.C. ; Tustison, N. ; Gee, J. ; Shou, H.</creatorcontrib><description>To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral). Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task. MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types. Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx. •BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.08.016</identifier><identifier>PMID: 28850899</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Allografts ; Bronchiectasis ; Bronchiolitis obliterans ; Bronchiolitis Obliterans - diagnosis ; Bronchiolitis Obliterans - diagnostic imaging ; Bronchiolitis Obliterans - physiopathology ; Bronchiolitis obliterans syndrome (BOS) ; Bronchopneumonia ; Chronic obstructive pulmonary disease ; Computed tomography ; Datasets ; Diagnosis ; Diagnostic systems ; Emphysema ; Female ; Humans ; Lung Transplantation ; Lung transplantation (LTx) ; Lung transplants ; Male ; Medical diagnosis ; Medical imaging ; Middle Aged ; Models, Biological ; Mortality ; Multivariate logistic regression (MVLR) ; Patients ; Primary Graft Dysfunction - diagnosis ; Primary Graft Dysfunction - diagnostic imaging ; Primary Graft Dysfunction - physiopathology ; Pulmonary functions ; Quantitative CT (qCT) metrics ; Registration ; Regression analysis ; Respiration ; Respiratory function ; Respiratory Function Tests ; Support vector machines ; Support vector machines (SVM) ; Syndrome ; Tomography, X-Ray Computed ; Transplantation ; Transplants &amp; implants ; Xenografts</subject><ispartof>Computers in biology and medicine, 2017-10, Vol.89, p.275-281</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</citedby><cites>FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1954366229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28850899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, E. Mortani</creatorcontrib><creatorcontrib>Simpson, S.</creatorcontrib><creatorcontrib>Lee, J.C.</creatorcontrib><creatorcontrib>Tustison, N.</creatorcontrib><creatorcontrib>Gee, J.</creatorcontrib><creatorcontrib>Shou, H.</creatorcontrib><title>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral). Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task. MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types. Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx. •BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Allografts</subject><subject>Bronchiectasis</subject><subject>Bronchiolitis obliterans</subject><subject>Bronchiolitis Obliterans - diagnosis</subject><subject>Bronchiolitis Obliterans - diagnostic imaging</subject><subject>Bronchiolitis Obliterans - physiopathology</subject><subject>Bronchiolitis obliterans syndrome (BOS)</subject><subject>Bronchopneumonia</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Emphysema</subject><subject>Female</subject><subject>Humans</subject><subject>Lung Transplantation</subject><subject>Lung transplantation (LTx)</subject><subject>Lung transplants</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Multivariate logistic regression (MVLR)</subject><subject>Patients</subject><subject>Primary Graft Dysfunction - diagnosis</subject><subject>Primary Graft Dysfunction - diagnostic imaging</subject><subject>Primary Graft Dysfunction - physiopathology</subject><subject>Pulmonary functions</subject><subject>Quantitative CT (qCT) metrics</subject><subject>Registration</subject><subject>Regression analysis</subject><subject>Respiration</subject><subject>Respiratory function</subject><subject>Respiratory Function Tests</subject><subject>Support vector machines</subject><subject>Support vector machines (SVM)</subject><subject>Syndrome</subject><subject>Tomography, X-Ray Computed</subject><subject>Transplantation</subject><subject>Transplants &amp; implants</subject><subject>Xenografts</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EotvCKyBLXLgkjBMnto-wKlCpiEs5W44zLl4l8dZ2Ku2D8L442lZIXLh45Pk_-x_7J4QyqBmw_uOhtmE-Dj7MONYNMFGDrIvwguyYFKqCruUvyQ6AQcVl012Qy5QOAMChhdfkopGyA6nUjvz-vk7ZP5roTUY6hxEnv9zTNW3rw2qW7LMpANL9HZ0xR28Tnc2J-vkYQ2kba9do7IkGR0dv7peQfNo2QwyL_eXD5PPWGErFaJZE02kZY5mcGlc6dFqLU96U41TsillY3pBXzkwJ3z7VK_Lzy_Xd_lt1--Przf7TbWU5NLmywvTtqIyyg2SuabEXTqpOKaEGhFHx1gjuOomj48KpXkrVDwKbfnANgOXtFflwvre85WHFlPXsk8WpDIJhTZqptlWcCS4L-v4f9BDWuJTpCtXxtu-bRhVKnikbQ0oRnT5GP5t40gz0Fp0-6L_R6S06DVIXoRx992SwDpv2fPA5qwJ8PgNYfuTRY9TJelwsjj6izXoM_v8ufwCdK7PK</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Barbosa, E. Mortani</creator><creator>Simpson, S.</creator><creator>Lee, J.C.</creator><creator>Tustison, N.</creator><creator>Gee, J.</creator><creator>Shou, H.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</title><author>Barbosa, E. Mortani ; Simpson, S. ; Lee, J.C. ; Tustison, N. ; Gee, J. ; Shou, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Allografts</topic><topic>Bronchiectasis</topic><topic>Bronchiolitis obliterans</topic><topic>Bronchiolitis Obliterans - diagnosis</topic><topic>Bronchiolitis Obliterans - diagnostic imaging</topic><topic>Bronchiolitis Obliterans - physiopathology</topic><topic>Bronchiolitis obliterans syndrome (BOS)</topic><topic>Bronchopneumonia</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Emphysema</topic><topic>Female</topic><topic>Humans</topic><topic>Lung Transplantation</topic><topic>Lung transplantation (LTx)</topic><topic>Lung transplants</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Multivariate logistic regression (MVLR)</topic><topic>Patients</topic><topic>Primary Graft Dysfunction - diagnosis</topic><topic>Primary Graft Dysfunction - diagnostic imaging</topic><topic>Primary Graft Dysfunction - physiopathology</topic><topic>Pulmonary functions</topic><topic>Quantitative CT (qCT) metrics</topic><topic>Registration</topic><topic>Regression analysis</topic><topic>Respiration</topic><topic>Respiratory function</topic><topic>Respiratory Function Tests</topic><topic>Support vector machines</topic><topic>Support vector machines (SVM)</topic><topic>Syndrome</topic><topic>Tomography, X-Ray Computed</topic><topic>Transplantation</topic><topic>Transplants &amp; implants</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, E. Mortani</creatorcontrib><creatorcontrib>Simpson, S.</creatorcontrib><creatorcontrib>Lee, J.C.</creatorcontrib><creatorcontrib>Tustison, N.</creatorcontrib><creatorcontrib>Gee, J.</creatorcontrib><creatorcontrib>Shou, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, E. Mortani</au><au>Simpson, S.</au><au>Lee, J.C.</au><au>Tustison, N.</au><au>Gee, J.</au><au>Shou, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>89</volume><spage>275</spage><epage>281</epage><pages>275-281</pages><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral). Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task. MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types. Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx. •BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28850899</pmid><doi>10.1016/j.compbiomed.2017.08.016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2017-10, Vol.89, p.275-281
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1933941748
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Adult
Aged
Allografts
Bronchiectasis
Bronchiolitis obliterans
Bronchiolitis Obliterans - diagnosis
Bronchiolitis Obliterans - diagnostic imaging
Bronchiolitis Obliterans - physiopathology
Bronchiolitis obliterans syndrome (BOS)
Bronchopneumonia
Chronic obstructive pulmonary disease
Computed tomography
Datasets
Diagnosis
Diagnostic systems
Emphysema
Female
Humans
Lung Transplantation
Lung transplantation (LTx)
Lung transplants
Male
Medical diagnosis
Medical imaging
Middle Aged
Models, Biological
Mortality
Multivariate logistic regression (MVLR)
Patients
Primary Graft Dysfunction - diagnosis
Primary Graft Dysfunction - diagnostic imaging
Primary Graft Dysfunction - physiopathology
Pulmonary functions
Quantitative CT (qCT) metrics
Registration
Regression analysis
Respiration
Respiratory function
Respiratory Function Tests
Support vector machines
Support vector machines (SVM)
Syndrome
Tomography, X-Ray Computed
Transplantation
Transplants & implants
Xenografts
title Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20modeling%20using%20quantitative%20CT%20metrics%20may%20improve%20accuracy%20of%20diagnosis%20of%20bronchiolitis%20obliterans%20syndrome%20after%20lung%20transplantation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Barbosa,%20E.%20Mortani&rft.date=2017-10-01&rft.volume=89&rft.spage=275&rft.epage=281&rft.pages=275-281&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2017.08.016&rft_dat=%3Cproquest_cross%3E1933941748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954366229&rft_id=info:pmid/28850899&rft_els_id=S0010482517302755&rfr_iscdi=true