Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation
To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (un...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2017-10, Vol.89, p.275-281 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | |
container_start_page | 275 |
container_title | Computers in biology and medicine |
container_volume | 89 |
creator | Barbosa, E. Mortani Simpson, S. Lee, J.C. Tustison, N. Gee, J. Shou, H. |
description | To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral).
Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task.
MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types.
Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx.
•BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients. |
doi_str_mv | 10.1016/j.compbiomed.2017.08.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933941748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482517302755</els_id><sourcerecordid>1933941748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EotvCKyBLXLgkjBMnto-wKlCpiEs5W44zLl4l8dZ2Ku2D8L442lZIXLh45Pk_-x_7J4QyqBmw_uOhtmE-Dj7MONYNMFGDrIvwguyYFKqCruUvyQ6AQcVl012Qy5QOAMChhdfkopGyA6nUjvz-vk7ZP5roTUY6hxEnv9zTNW3rw2qW7LMpANL9HZ0xR28Tnc2J-vkYQ2kba9do7IkGR0dv7peQfNo2QwyL_eXD5PPWGErFaJZE02kZY5mcGlc6dFqLU96U41TsillY3pBXzkwJ3z7VK_Lzy_Xd_lt1--Przf7TbWU5NLmywvTtqIyyg2SuabEXTqpOKaEGhFHx1gjuOomj48KpXkrVDwKbfnANgOXtFflwvre85WHFlPXsk8WpDIJhTZqptlWcCS4L-v4f9BDWuJTpCtXxtu-bRhVKnikbQ0oRnT5GP5t40gz0Fp0-6L_R6S06DVIXoRx992SwDpv2fPA5qwJ8PgNYfuTRY9TJelwsjj6izXoM_v8ufwCdK7PK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954366229</pqid></control><display><type>article</type><title>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Barbosa, E. Mortani ; Simpson, S. ; Lee, J.C. ; Tustison, N. ; Gee, J. ; Shou, H.</creator><creatorcontrib>Barbosa, E. Mortani ; Simpson, S. ; Lee, J.C. ; Tustison, N. ; Gee, J. ; Shou, H.</creatorcontrib><description>To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral).
Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task.
MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types.
Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx.
•BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.08.016</identifier><identifier>PMID: 28850899</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Allografts ; Bronchiectasis ; Bronchiolitis obliterans ; Bronchiolitis Obliterans - diagnosis ; Bronchiolitis Obliterans - diagnostic imaging ; Bronchiolitis Obliterans - physiopathology ; Bronchiolitis obliterans syndrome (BOS) ; Bronchopneumonia ; Chronic obstructive pulmonary disease ; Computed tomography ; Datasets ; Diagnosis ; Diagnostic systems ; Emphysema ; Female ; Humans ; Lung Transplantation ; Lung transplantation (LTx) ; Lung transplants ; Male ; Medical diagnosis ; Medical imaging ; Middle Aged ; Models, Biological ; Mortality ; Multivariate logistic regression (MVLR) ; Patients ; Primary Graft Dysfunction - diagnosis ; Primary Graft Dysfunction - diagnostic imaging ; Primary Graft Dysfunction - physiopathology ; Pulmonary functions ; Quantitative CT (qCT) metrics ; Registration ; Regression analysis ; Respiration ; Respiratory function ; Respiratory Function Tests ; Support vector machines ; Support vector machines (SVM) ; Syndrome ; Tomography, X-Ray Computed ; Transplantation ; Transplants & implants ; Xenografts</subject><ispartof>Computers in biology and medicine, 2017-10, Vol.89, p.275-281</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</citedby><cites>FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1954366229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28850899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, E. Mortani</creatorcontrib><creatorcontrib>Simpson, S.</creatorcontrib><creatorcontrib>Lee, J.C.</creatorcontrib><creatorcontrib>Tustison, N.</creatorcontrib><creatorcontrib>Gee, J.</creatorcontrib><creatorcontrib>Shou, H.</creatorcontrib><title>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral).
Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task.
MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types.
Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx.
•BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Allografts</subject><subject>Bronchiectasis</subject><subject>Bronchiolitis obliterans</subject><subject>Bronchiolitis Obliterans - diagnosis</subject><subject>Bronchiolitis Obliterans - diagnostic imaging</subject><subject>Bronchiolitis Obliterans - physiopathology</subject><subject>Bronchiolitis obliterans syndrome (BOS)</subject><subject>Bronchopneumonia</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Emphysema</subject><subject>Female</subject><subject>Humans</subject><subject>Lung Transplantation</subject><subject>Lung transplantation (LTx)</subject><subject>Lung transplants</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Multivariate logistic regression (MVLR)</subject><subject>Patients</subject><subject>Primary Graft Dysfunction - diagnosis</subject><subject>Primary Graft Dysfunction - diagnostic imaging</subject><subject>Primary Graft Dysfunction - physiopathology</subject><subject>Pulmonary functions</subject><subject>Quantitative CT (qCT) metrics</subject><subject>Registration</subject><subject>Regression analysis</subject><subject>Respiration</subject><subject>Respiratory function</subject><subject>Respiratory Function Tests</subject><subject>Support vector machines</subject><subject>Support vector machines (SVM)</subject><subject>Syndrome</subject><subject>Tomography, X-Ray Computed</subject><subject>Transplantation</subject><subject>Transplants & implants</subject><subject>Xenografts</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EotvCKyBLXLgkjBMnto-wKlCpiEs5W44zLl4l8dZ2Ku2D8L442lZIXLh45Pk_-x_7J4QyqBmw_uOhtmE-Dj7MONYNMFGDrIvwguyYFKqCruUvyQ6AQcVl012Qy5QOAMChhdfkopGyA6nUjvz-vk7ZP5roTUY6hxEnv9zTNW3rw2qW7LMpANL9HZ0xR28Tnc2J-vkYQ2kba9do7IkGR0dv7peQfNo2QwyL_eXD5PPWGErFaJZE02kZY5mcGlc6dFqLU96U41TsillY3pBXzkwJ3z7VK_Lzy_Xd_lt1--Przf7TbWU5NLmywvTtqIyyg2SuabEXTqpOKaEGhFHx1gjuOomj48KpXkrVDwKbfnANgOXtFflwvre85WHFlPXsk8WpDIJhTZqptlWcCS4L-v4f9BDWuJTpCtXxtu-bRhVKnikbQ0oRnT5GP5t40gz0Fp0-6L_R6S06DVIXoRx992SwDpv2fPA5qwJ8PgNYfuTRY9TJelwsjj6izXoM_v8ufwCdK7PK</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Barbosa, E. Mortani</creator><creator>Simpson, S.</creator><creator>Lee, J.C.</creator><creator>Tustison, N.</creator><creator>Gee, J.</creator><creator>Shou, H.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</title><author>Barbosa, E. Mortani ; Simpson, S. ; Lee, J.C. ; Tustison, N. ; Gee, J. ; Shou, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c7a63d9a9cb81f23e67f8959979be0d943a74f58edf47f968896b7e26bf200c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Allografts</topic><topic>Bronchiectasis</topic><topic>Bronchiolitis obliterans</topic><topic>Bronchiolitis Obliterans - diagnosis</topic><topic>Bronchiolitis Obliterans - diagnostic imaging</topic><topic>Bronchiolitis Obliterans - physiopathology</topic><topic>Bronchiolitis obliterans syndrome (BOS)</topic><topic>Bronchopneumonia</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Emphysema</topic><topic>Female</topic><topic>Humans</topic><topic>Lung Transplantation</topic><topic>Lung transplantation (LTx)</topic><topic>Lung transplants</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Multivariate logistic regression (MVLR)</topic><topic>Patients</topic><topic>Primary Graft Dysfunction - diagnosis</topic><topic>Primary Graft Dysfunction - diagnostic imaging</topic><topic>Primary Graft Dysfunction - physiopathology</topic><topic>Pulmonary functions</topic><topic>Quantitative CT (qCT) metrics</topic><topic>Registration</topic><topic>Regression analysis</topic><topic>Respiration</topic><topic>Respiratory function</topic><topic>Respiratory Function Tests</topic><topic>Support vector machines</topic><topic>Support vector machines (SVM)</topic><topic>Syndrome</topic><topic>Tomography, X-Ray Computed</topic><topic>Transplantation</topic><topic>Transplants & implants</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, E. Mortani</creatorcontrib><creatorcontrib>Simpson, S.</creatorcontrib><creatorcontrib>Lee, J.C.</creatorcontrib><creatorcontrib>Tustison, N.</creatorcontrib><creatorcontrib>Gee, J.</creatorcontrib><creatorcontrib>Shou, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, E. Mortani</au><au>Simpson, S.</au><au>Lee, J.C.</au><au>Tustison, N.</au><au>Gee, J.</au><au>Shou, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>89</volume><spage>275</spage><epage>281</epage><pages>275-281</pages><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>To assess how quantitative CT (qCT) metrics compare to pulmonary function testing (PFT) and semi-quantitative image scores (SQS) to diagnose bronchiolitis obliterans syndrome (BOS), manifestation of chronic lung allograft dysfunction after lung transplantation (LTx), according to the type of LTx (unilateral or bilateral).
Paired inspiratory-expiratory CT scans and PFTs of 176 LTx patients were analyzed retrospectively, and separated into BOS (78) and non-BOS (98) cohorts. SQS were assessed by 2 radiologists and graded (0–3) for features including mosaic attenuation and bronchiectasis. qCT metrics included lung volumes and air trapping volumes. Multivariate logistic regression (MVLR) and support vector machines (SVM) were used for the classification task.
MVLR and SVM models using PFT metrics demonstrated highest accuracy for bilateral LTx (max AUC 0.771), whereas models using qCT metrics-only outperformed models using SQS or PFTs in unilateral LTx (max AUC 0.817), to diagnose BOS. Adding PC (principal components) from qCT on top of PFT improved model diagnostic accuracy for all transplant types.
Combinations of qCT metrics augment the diagnostic performance of PFTs, are superior to SQS to predict BOS status, and outperform PFTs in the unilateral LTx group. This suggests that latent information on paired volumetric CT may allow early diagnosis of BOS in LTx patients, particularly in unilateral LTx.
•BOS is the most important limitation to long term survival following LTx.•PFT is the cornerstone of diagnosis for BOS, however its sensitivity for early disease is limited.•qCT metrics can improve prediction of BOS, especially in unilateral LTx.•qCT metrics may allow earlier BOS diagnosis and possibly better outcomes for LTx patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28850899</pmid><doi>10.1016/j.compbiomed.2017.08.016</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2017-10, Vol.89, p.275-281 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1933941748 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Adult Aged Allografts Bronchiectasis Bronchiolitis obliterans Bronchiolitis Obliterans - diagnosis Bronchiolitis Obliterans - diagnostic imaging Bronchiolitis Obliterans - physiopathology Bronchiolitis obliterans syndrome (BOS) Bronchopneumonia Chronic obstructive pulmonary disease Computed tomography Datasets Diagnosis Diagnostic systems Emphysema Female Humans Lung Transplantation Lung transplantation (LTx) Lung transplants Male Medical diagnosis Medical imaging Middle Aged Models, Biological Mortality Multivariate logistic regression (MVLR) Patients Primary Graft Dysfunction - diagnosis Primary Graft Dysfunction - diagnostic imaging Primary Graft Dysfunction - physiopathology Pulmonary functions Quantitative CT (qCT) metrics Registration Regression analysis Respiration Respiratory function Respiratory Function Tests Support vector machines Support vector machines (SVM) Syndrome Tomography, X-Ray Computed Transplantation Transplants & implants Xenografts |
title | Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20modeling%20using%20quantitative%20CT%20metrics%20may%20improve%20accuracy%20of%20diagnosis%20of%20bronchiolitis%20obliterans%20syndrome%20after%20lung%20transplantation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Barbosa,%20E.%20Mortani&rft.date=2017-10-01&rft.volume=89&rft.spage=275&rft.epage=281&rft.pages=275-281&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2017.08.016&rft_dat=%3Cproquest_cross%3E1933941748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954366229&rft_id=info:pmid/28850899&rft_els_id=S0010482517302755&rfr_iscdi=true |