Enhanced Photocatalytic Reaction at Air–Liquid–Solid Joint Interfaces

Semiconductor photocatalysis has long been considered as a promising approach for water pollution remediation. However, limited by the recombination of electrons and holes, low kinetics of photocatalysts and slow reaction rate impede large-scale applications. Herein, we addressed this limitation by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-09, Vol.139 (36), p.12402-12405
Hauptverfasser: Sheng, Xia, Liu, Zhen, Zeng, Ruosha, Chen, Liping, Feng, Xinjian, Jiang, Lei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor photocatalysis has long been considered as a promising approach for water pollution remediation. However, limited by the recombination of electrons and holes, low kinetics of photocatalysts and slow reaction rate impede large-scale applications. Herein, we addressed this limitation by developing a triphase photocatalytic system in which a photocatalytic reaction is carried out at air–liquid–solid joint interfaces. Such a triphase system allows the rapid delivery of oxygen, a natural electron scavenger, from air to the reaction interface. This enables the efficient removal of photogenerated electrons from the photocatalyst surface and minimization of electron–hole recombination even at high light intensities, thereby resulting in an approximate 10-fold enhancement in the photocatalytic reaction rate as compared to a conventional liquid/solid diphase system. The triphase system appears an enabling platform for understanding and maximizing photocatalyst kinetics, aiding in the application of semiconductor photocatalysis.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b07187