Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy

BACKGROUND Zucchini fruit plays an important part in healthy nutrition due to its high content of carbohydrates. Recent studies have demonstrated the feasibility of visible–NIRS to predict quality profile. However, this procedure has not been applied to determine carbohydrates. RESULTS Visible–NIR a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2018-03, Vol.98 (5), p.1703-1711
Hauptverfasser: Pomares‐Viciana, Teresa, Martínez‐Valdivieso, Damián, Font, Rafael, Gómez, Pedro, del Río‐Celestino, Mercedes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1711
container_issue 5
container_start_page 1703
container_title Journal of the science of food and agriculture
container_volume 98
creator Pomares‐Viciana, Teresa
Martínez‐Valdivieso, Damián
Font, Rafael
Gómez, Pedro
del Río‐Celestino, Mercedes
description BACKGROUND Zucchini fruit plays an important part in healthy nutrition due to its high content of carbohydrates. Recent studies have demonstrated the feasibility of visible–NIRS to predict quality profile. However, this procedure has not been applied to determine carbohydrates. RESULTS Visible–NIR and wet chemical methods were used to determine individual sugars and starch in zucchini fruits. By applying a principal component analysis (PCA) with NIR spectral data a differentiation between the less sweet versus the sweetest zucchini accessions could be found. For the determination of carbohydrate content effective prediction models for individual sugars such as glucose, fructose, sucrose and starch by using partial least squares (PLS) regression have been developed. CONCLUSION The coefficients of determination in the external validation (R2VAL) ranged from 0.66 to 0.85. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for different quality compounds and showed values that were characteristic of equations suitable for screening purposes. From the study of the MPLS loadings of the first three terms of the different equations for sugars and starch, it can be concluded that some major cell components such as pigments, cellulose, organic acids highly participated in modelling the equations for carbohydrates. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.8642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933938667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933938667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-cc80938cf95eeaee694be0a1fa405f92541e5514c97071ac3ea86128a3f307383</originalsourceid><addsrcrecordid>eNp1kcFuEzEQhi1ERUPhwAsgS1zgsO3Y3vWuj1VEgapSD8DZmjhj4iixF3tXKDw9TlM4IPVkjebTN575GXsj4FIAyKtt8Xg56FY-YwsBpm8ABDxni9qTTSdaec5elrIFAGO0fsHO5TB0SnR6wbbLDWZ0E-VQcAopcoxrPmZaB_dQJs8d5lXaHNYZJ-IuxYnixEPkv2fnNiEG7vMcJj6XEH_wSJhr02esDl5GclNOxaXx8IqdedwVev34XrDvNx-_LT83d_efviyv7xqnOiUb5wYwanDedERIpE27IkDhsYXOG9m1grq6lDM99AKdIhy0kAMqr6BXg7pg70_eMaefM5XJ7kNxtNthpDQXK4xSdYDWfUXf_Ydu05xj_Z2V9YRaQ2ugUh9OlKublEzejjnsMR-sAHsMwB4DsMcAKvv20Tiv9rT-R_69eAWuTsCvsKPD0yZ7-_Xm-kH5BzGBkP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010660490</pqid></control><display><type>article</type><title>Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pomares‐Viciana, Teresa ; Martínez‐Valdivieso, Damián ; Font, Rafael ; Gómez, Pedro ; del Río‐Celestino, Mercedes</creator><creatorcontrib>Pomares‐Viciana, Teresa ; Martínez‐Valdivieso, Damián ; Font, Rafael ; Gómez, Pedro ; del Río‐Celestino, Mercedes</creatorcontrib><description>BACKGROUND Zucchini fruit plays an important part in healthy nutrition due to its high content of carbohydrates. Recent studies have demonstrated the feasibility of visible–NIRS to predict quality profile. However, this procedure has not been applied to determine carbohydrates. RESULTS Visible–NIR and wet chemical methods were used to determine individual sugars and starch in zucchini fruits. By applying a principal component analysis (PCA) with NIR spectral data a differentiation between the less sweet versus the sweetest zucchini accessions could be found. For the determination of carbohydrate content effective prediction models for individual sugars such as glucose, fructose, sucrose and starch by using partial least squares (PLS) regression have been developed. CONCLUSION The coefficients of determination in the external validation (R2VAL) ranged from 0.66 to 0.85. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for different quality compounds and showed values that were characteristic of equations suitable for screening purposes. From the study of the MPLS loadings of the first three terms of the different equations for sugars and starch, it can be concluded that some major cell components such as pigments, cellulose, organic acids highly participated in modelling the equations for carbohydrates. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.8642</identifier><identifier>PMID: 28853156</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animal models ; Carbohydrates ; Carbohydrates - chemistry ; Cellulose ; Cellulose - analysis ; Cucurbita ; Cucurbita - chemistry ; Feasibility studies ; Fructose ; Fructose - analysis ; Fruit - chemistry ; Fruits ; glucose ; Glucose - analysis ; Infrared spectroscopy ; Mathematical models ; Near infrared radiation ; NIRS ; Nutrition ; Organic acids ; Pigments ; Prediction models ; Principal components analysis ; Regression analysis ; Spectroscopy, Near-Infrared - methods ; Standard error ; Starch ; Starch - analysis ; Sucrose ; Sucrose - analysis ; Sugar ; Sweet taste ; Vegetables - chemistry</subject><ispartof>Journal of the science of food and agriculture, 2018-03, Vol.98 (5), p.1703-1711</ispartof><rights>2017 Society of Chemical Industry</rights><rights>2017 Society of Chemical Industry.</rights><rights>2018 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-cc80938cf95eeaee694be0a1fa405f92541e5514c97071ac3ea86128a3f307383</citedby><cites>FETCH-LOGICAL-c3532-cc80938cf95eeaee694be0a1fa405f92541e5514c97071ac3ea86128a3f307383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.8642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.8642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28853156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pomares‐Viciana, Teresa</creatorcontrib><creatorcontrib>Martínez‐Valdivieso, Damián</creatorcontrib><creatorcontrib>Font, Rafael</creatorcontrib><creatorcontrib>Gómez, Pedro</creatorcontrib><creatorcontrib>del Río‐Celestino, Mercedes</creatorcontrib><title>Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Zucchini fruit plays an important part in healthy nutrition due to its high content of carbohydrates. Recent studies have demonstrated the feasibility of visible–NIRS to predict quality profile. However, this procedure has not been applied to determine carbohydrates. RESULTS Visible–NIR and wet chemical methods were used to determine individual sugars and starch in zucchini fruits. By applying a principal component analysis (PCA) with NIR spectral data a differentiation between the less sweet versus the sweetest zucchini accessions could be found. For the determination of carbohydrate content effective prediction models for individual sugars such as glucose, fructose, sucrose and starch by using partial least squares (PLS) regression have been developed. CONCLUSION The coefficients of determination in the external validation (R2VAL) ranged from 0.66 to 0.85. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for different quality compounds and showed values that were characteristic of equations suitable for screening purposes. From the study of the MPLS loadings of the first three terms of the different equations for sugars and starch, it can be concluded that some major cell components such as pigments, cellulose, organic acids highly participated in modelling the equations for carbohydrates. © 2017 Society of Chemical Industry</description><subject>Animal models</subject><subject>Carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>Cellulose</subject><subject>Cellulose - analysis</subject><subject>Cucurbita</subject><subject>Cucurbita - chemistry</subject><subject>Feasibility studies</subject><subject>Fructose</subject><subject>Fructose - analysis</subject><subject>Fruit - chemistry</subject><subject>Fruits</subject><subject>glucose</subject><subject>Glucose - analysis</subject><subject>Infrared spectroscopy</subject><subject>Mathematical models</subject><subject>Near infrared radiation</subject><subject>NIRS</subject><subject>Nutrition</subject><subject>Organic acids</subject><subject>Pigments</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Standard error</subject><subject>Starch</subject><subject>Starch - analysis</subject><subject>Sucrose</subject><subject>Sucrose - analysis</subject><subject>Sugar</subject><subject>Sweet taste</subject><subject>Vegetables - chemistry</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFuEzEQhi1ERUPhwAsgS1zgsO3Y3vWuj1VEgapSD8DZmjhj4iixF3tXKDw9TlM4IPVkjebTN575GXsj4FIAyKtt8Xg56FY-YwsBpm8ABDxni9qTTSdaec5elrIFAGO0fsHO5TB0SnR6wbbLDWZ0E-VQcAopcoxrPmZaB_dQJs8d5lXaHNYZJ-IuxYnixEPkv2fnNiEG7vMcJj6XEH_wSJhr02esDl5GclNOxaXx8IqdedwVev34XrDvNx-_LT83d_efviyv7xqnOiUb5wYwanDedERIpE27IkDhsYXOG9m1grq6lDM99AKdIhy0kAMqr6BXg7pg70_eMaefM5XJ7kNxtNthpDQXK4xSdYDWfUXf_Ydu05xj_Z2V9YRaQ2ugUh9OlKublEzejjnsMR-sAHsMwB4DsMcAKvv20Tiv9rT-R_69eAWuTsCvsKPD0yZ7-_Xm-kH5BzGBkP0</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Pomares‐Viciana, Teresa</creator><creator>Martínez‐Valdivieso, Damián</creator><creator>Font, Rafael</creator><creator>Gómez, Pedro</creator><creator>del Río‐Celestino, Mercedes</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy</title><author>Pomares‐Viciana, Teresa ; Martínez‐Valdivieso, Damián ; Font, Rafael ; Gómez, Pedro ; del Río‐Celestino, Mercedes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-cc80938cf95eeaee694be0a1fa405f92541e5514c97071ac3ea86128a3f307383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>Cellulose</topic><topic>Cellulose - analysis</topic><topic>Cucurbita</topic><topic>Cucurbita - chemistry</topic><topic>Feasibility studies</topic><topic>Fructose</topic><topic>Fructose - analysis</topic><topic>Fruit - chemistry</topic><topic>Fruits</topic><topic>glucose</topic><topic>Glucose - analysis</topic><topic>Infrared spectroscopy</topic><topic>Mathematical models</topic><topic>Near infrared radiation</topic><topic>NIRS</topic><topic>Nutrition</topic><topic>Organic acids</topic><topic>Pigments</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Standard error</topic><topic>Starch</topic><topic>Starch - analysis</topic><topic>Sucrose</topic><topic>Sucrose - analysis</topic><topic>Sugar</topic><topic>Sweet taste</topic><topic>Vegetables - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomares‐Viciana, Teresa</creatorcontrib><creatorcontrib>Martínez‐Valdivieso, Damián</creatorcontrib><creatorcontrib>Font, Rafael</creatorcontrib><creatorcontrib>Gómez, Pedro</creatorcontrib><creatorcontrib>del Río‐Celestino, Mercedes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomares‐Viciana, Teresa</au><au>Martínez‐Valdivieso, Damián</au><au>Font, Rafael</au><au>Gómez, Pedro</au><au>del Río‐Celestino, Mercedes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2018-03</date><risdate>2018</risdate><volume>98</volume><issue>5</issue><spage>1703</spage><epage>1711</epage><pages>1703-1711</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Zucchini fruit plays an important part in healthy nutrition due to its high content of carbohydrates. Recent studies have demonstrated the feasibility of visible–NIRS to predict quality profile. However, this procedure has not been applied to determine carbohydrates. RESULTS Visible–NIR and wet chemical methods were used to determine individual sugars and starch in zucchini fruits. By applying a principal component analysis (PCA) with NIR spectral data a differentiation between the less sweet versus the sweetest zucchini accessions could be found. For the determination of carbohydrate content effective prediction models for individual sugars such as glucose, fructose, sucrose and starch by using partial least squares (PLS) regression have been developed. CONCLUSION The coefficients of determination in the external validation (R2VAL) ranged from 0.66 to 0.85. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for different quality compounds and showed values that were characteristic of equations suitable for screening purposes. From the study of the MPLS loadings of the first three terms of the different equations for sugars and starch, it can be concluded that some major cell components such as pigments, cellulose, organic acids highly participated in modelling the equations for carbohydrates. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>28853156</pmid><doi>10.1002/jsfa.8642</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2018-03, Vol.98 (5), p.1703-1711
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_1933938667
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal models
Carbohydrates
Carbohydrates - chemistry
Cellulose
Cellulose - analysis
Cucurbita
Cucurbita - chemistry
Feasibility studies
Fructose
Fructose - analysis
Fruit - chemistry
Fruits
glucose
Glucose - analysis
Infrared spectroscopy
Mathematical models
Near infrared radiation
NIRS
Nutrition
Organic acids
Pigments
Prediction models
Principal components analysis
Regression analysis
Spectroscopy, Near-Infrared - methods
Standard error
Starch
Starch - analysis
Sucrose
Sucrose - analysis
Sugar
Sweet taste
Vegetables - chemistry
title Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20and%20prediction%20of%20carbohydrate%20content%20in%20zucchini%20fruit%20using%20near%20infrared%20spectroscopy&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Pomares%E2%80%90Viciana,%20Teresa&rft.date=2018-03&rft.volume=98&rft.issue=5&rft.spage=1703&rft.epage=1711&rft.pages=1703-1711&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.8642&rft_dat=%3Cproquest_cross%3E1933938667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010660490&rft_id=info:pmid/28853156&rfr_iscdi=true