Knee cartilage segmentation and thickness computation from ultrasound images
Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segme...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2018-04, Vol.56 (4), p.657-669 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 4 |
container_start_page | 657 |
container_title | Medical & biological engineering & computing |
container_volume | 56 |
creator | Faisal, Amir Ng, Siew-Cheok Goh, Siew-Li Lai, Khin Wee |
description | Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s
κ
coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval. |
doi_str_mv | 10.1007/s11517-017-1710-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933604240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933604240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EoqXwA7igSFy4BHYdO06OCPESlbjA2bLdTUnJo9jJgX-PqxaQkDisfJhvZtfD2CnCJQKoq4AoUaUQBxVCyvfYFJXAFIQQ-2wKKCCqWEzYUQgrAI6Si0M24UUhygzVlM2fOqLEGT_UjVlSEmjZUjeYoe67xHSLZHir3XtHISSub9fjTql83yZjM3gT-jFSdRvN4ZgdVKYJdLJ7Z-z17vbl5iGdP98_3lzPU5cpPqQcKltyqnJpQNocIcucQmNtUTgpVAG0MByLKiMnCYW1RlbCGbKVsJTnlM3YxTZ37fuPkcKg2zo4ahrTUT8GjWWW5SC4gIie_0FX_ei7eJ3mgFIhF6qMFG4p5_sQPFV67eOX_KdG0Juq9bZqHavWm6o1j56zXfJoW1r8OL67jQDfAiFK3ZL87-r_U78A9buJ0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015712479</pqid></control><display><type>article</type><title>Knee cartilage segmentation and thickness computation from ultrasound images</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Faisal, Amir ; Ng, Siew-Cheok ; Goh, Siew-Li ; Lai, Khin Wee</creator><creatorcontrib>Faisal, Amir ; Ng, Siew-Cheok ; Goh, Siew-Li ; Lai, Khin Wee</creatorcontrib><description>Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s
κ
coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-017-1710-2</identifier><identifier>PMID: 28849317</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cartilage ; Computation ; Computer Applications ; Degeneration ; Human Physiology ; Image processing ; Image segmentation ; Imaging ; Interfaces ; Knee ; Noise intensity ; Original Article ; Radiology ; Skin & tissue grafts ; Thickness ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Medical & biological engineering & computing, 2018-04, Vol.56 (4), p.657-669</ispartof><rights>International Federation for Medical and Biological Engineering 2017</rights><rights>Medical & Biological Engineering & Computing is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</citedby><cites>FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</cites><orcidid>0000-0002-8602-0533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-017-1710-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-017-1710-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28849317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faisal, Amir</creatorcontrib><creatorcontrib>Ng, Siew-Cheok</creatorcontrib><creatorcontrib>Goh, Siew-Li</creatorcontrib><creatorcontrib>Lai, Khin Wee</creatorcontrib><title>Knee cartilage segmentation and thickness computation from ultrasound images</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s
κ
coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cartilage</subject><subject>Computation</subject><subject>Computer Applications</subject><subject>Degeneration</subject><subject>Human Physiology</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Interfaces</subject><subject>Knee</subject><subject>Noise intensity</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Skin & tissue grafts</subject><subject>Thickness</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtPwzAQhC0EoqXwA7igSFy4BHYdO06OCPESlbjA2bLdTUnJo9jJgX-PqxaQkDisfJhvZtfD2CnCJQKoq4AoUaUQBxVCyvfYFJXAFIQQ-2wKKCCqWEzYUQgrAI6Si0M24UUhygzVlM2fOqLEGT_UjVlSEmjZUjeYoe67xHSLZHir3XtHISSub9fjTql83yZjM3gT-jFSdRvN4ZgdVKYJdLJ7Z-z17vbl5iGdP98_3lzPU5cpPqQcKltyqnJpQNocIcucQmNtUTgpVAG0MByLKiMnCYW1RlbCGbKVsJTnlM3YxTZ37fuPkcKg2zo4ahrTUT8GjWWW5SC4gIie_0FX_ei7eJ3mgFIhF6qMFG4p5_sQPFV67eOX_KdG0Juq9bZqHavWm6o1j56zXfJoW1r8OL67jQDfAiFK3ZL87-r_U78A9buJ0w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Faisal, Amir</creator><creator>Ng, Siew-Cheok</creator><creator>Goh, Siew-Li</creator><creator>Lai, Khin Wee</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8602-0533</orcidid></search><sort><creationdate>20180401</creationdate><title>Knee cartilage segmentation and thickness computation from ultrasound images</title><author>Faisal, Amir ; Ng, Siew-Cheok ; Goh, Siew-Li ; Lai, Khin Wee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cartilage</topic><topic>Computation</topic><topic>Computer Applications</topic><topic>Degeneration</topic><topic>Human Physiology</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Interfaces</topic><topic>Knee</topic><topic>Noise intensity</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Skin & tissue grafts</topic><topic>Thickness</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faisal, Amir</creatorcontrib><creatorcontrib>Ng, Siew-Cheok</creatorcontrib><creatorcontrib>Goh, Siew-Li</creatorcontrib><creatorcontrib>Lai, Khin Wee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faisal, Amir</au><au>Ng, Siew-Cheok</au><au>Goh, Siew-Li</au><au>Lai, Khin Wee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knee cartilage segmentation and thickness computation from ultrasound images</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>56</volume><issue>4</issue><spage>657</spage><epage>669</epage><pages>657-669</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s
κ
coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28849317</pmid><doi>10.1007/s11517-017-1710-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8602-0533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2018-04, Vol.56 (4), p.657-669 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1933604240 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Cartilage Computation Computer Applications Degeneration Human Physiology Image processing Image segmentation Imaging Interfaces Knee Noise intensity Original Article Radiology Skin & tissue grafts Thickness Ultrasonic imaging Ultrasound |
title | Knee cartilage segmentation and thickness computation from ultrasound images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knee%20cartilage%20segmentation%20and%20thickness%20computation%20from%20ultrasound%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Faisal,%20Amir&rft.date=2018-04-01&rft.volume=56&rft.issue=4&rft.spage=657&rft.epage=669&rft.pages=657-669&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-017-1710-2&rft_dat=%3Cproquest_cross%3E1933604240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015712479&rft_id=info:pmid/28849317&rfr_iscdi=true |