Knee cartilage segmentation and thickness computation from ultrasound images

Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2018-04, Vol.56 (4), p.657-669
Hauptverfasser: Faisal, Amir, Ng, Siew-Cheok, Goh, Siew-Li, Lai, Khin Wee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 4
container_start_page 657
container_title Medical & biological engineering & computing
container_volume 56
creator Faisal, Amir
Ng, Siew-Cheok
Goh, Siew-Li
Lai, Khin Wee
description Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.
doi_str_mv 10.1007/s11517-017-1710-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933604240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933604240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EoqXwA7igSFy4BHYdO06OCPESlbjA2bLdTUnJo9jJgX-PqxaQkDisfJhvZtfD2CnCJQKoq4AoUaUQBxVCyvfYFJXAFIQQ-2wKKCCqWEzYUQgrAI6Si0M24UUhygzVlM2fOqLEGT_UjVlSEmjZUjeYoe67xHSLZHir3XtHISSub9fjTql83yZjM3gT-jFSdRvN4ZgdVKYJdLJ7Z-z17vbl5iGdP98_3lzPU5cpPqQcKltyqnJpQNocIcucQmNtUTgpVAG0MByLKiMnCYW1RlbCGbKVsJTnlM3YxTZ37fuPkcKg2zo4ahrTUT8GjWWW5SC4gIie_0FX_ei7eJ3mgFIhF6qMFG4p5_sQPFV67eOX_KdG0Juq9bZqHavWm6o1j56zXfJoW1r8OL67jQDfAiFK3ZL87-r_U78A9buJ0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015712479</pqid></control><display><type>article</type><title>Knee cartilage segmentation and thickness computation from ultrasound images</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Faisal, Amir ; Ng, Siew-Cheok ; Goh, Siew-Li ; Lai, Khin Wee</creator><creatorcontrib>Faisal, Amir ; Ng, Siew-Cheok ; Goh, Siew-Li ; Lai, Khin Wee</creatorcontrib><description>Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-017-1710-2</identifier><identifier>PMID: 28849317</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cartilage ; Computation ; Computer Applications ; Degeneration ; Human Physiology ; Image processing ; Image segmentation ; Imaging ; Interfaces ; Knee ; Noise intensity ; Original Article ; Radiology ; Skin &amp; tissue grafts ; Thickness ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2018-04, Vol.56 (4), p.657-669</ispartof><rights>International Federation for Medical and Biological Engineering 2017</rights><rights>Medical &amp; Biological Engineering &amp; Computing is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</citedby><cites>FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</cites><orcidid>0000-0002-8602-0533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-017-1710-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-017-1710-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28849317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faisal, Amir</creatorcontrib><creatorcontrib>Ng, Siew-Cheok</creatorcontrib><creatorcontrib>Goh, Siew-Li</creatorcontrib><creatorcontrib>Lai, Khin Wee</creatorcontrib><title>Knee cartilage segmentation and thickness computation from ultrasound images</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cartilage</subject><subject>Computation</subject><subject>Computer Applications</subject><subject>Degeneration</subject><subject>Human Physiology</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Interfaces</subject><subject>Knee</subject><subject>Noise intensity</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Skin &amp; tissue grafts</subject><subject>Thickness</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtPwzAQhC0EoqXwA7igSFy4BHYdO06OCPESlbjA2bLdTUnJo9jJgX-PqxaQkDisfJhvZtfD2CnCJQKoq4AoUaUQBxVCyvfYFJXAFIQQ-2wKKCCqWEzYUQgrAI6Si0M24UUhygzVlM2fOqLEGT_UjVlSEmjZUjeYoe67xHSLZHir3XtHISSub9fjTql83yZjM3gT-jFSdRvN4ZgdVKYJdLJ7Z-z17vbl5iGdP98_3lzPU5cpPqQcKltyqnJpQNocIcucQmNtUTgpVAG0MByLKiMnCYW1RlbCGbKVsJTnlM3YxTZ37fuPkcKg2zo4ahrTUT8GjWWW5SC4gIie_0FX_ei7eJ3mgFIhF6qMFG4p5_sQPFV67eOX_KdG0Juq9bZqHavWm6o1j56zXfJoW1r8OL67jQDfAiFK3ZL87-r_U78A9buJ0w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Faisal, Amir</creator><creator>Ng, Siew-Cheok</creator><creator>Goh, Siew-Li</creator><creator>Lai, Khin Wee</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8602-0533</orcidid></search><sort><creationdate>20180401</creationdate><title>Knee cartilage segmentation and thickness computation from ultrasound images</title><author>Faisal, Amir ; Ng, Siew-Cheok ; Goh, Siew-Li ; Lai, Khin Wee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-20fb92ef65a05b61033c71abb88c54780eda218f3ec5e14bba5f4caebf4be66e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cartilage</topic><topic>Computation</topic><topic>Computer Applications</topic><topic>Degeneration</topic><topic>Human Physiology</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Interfaces</topic><topic>Knee</topic><topic>Noise intensity</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Skin &amp; tissue grafts</topic><topic>Thickness</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faisal, Amir</creatorcontrib><creatorcontrib>Ng, Siew-Cheok</creatorcontrib><creatorcontrib>Goh, Siew-Li</creatorcontrib><creatorcontrib>Lai, Khin Wee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faisal, Amir</au><au>Ng, Siew-Cheok</au><au>Goh, Siew-Li</au><au>Lai, Khin Wee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knee cartilage segmentation and thickness computation from ultrasound images</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>56</volume><issue>4</issue><spage>657</spage><epage>669</epage><pages>657-669</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen’s κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28849317</pmid><doi>10.1007/s11517-017-1710-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8602-0533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2018-04, Vol.56 (4), p.657-669
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_1933604240
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Cartilage
Computation
Computer Applications
Degeneration
Human Physiology
Image processing
Image segmentation
Imaging
Interfaces
Knee
Noise intensity
Original Article
Radiology
Skin & tissue grafts
Thickness
Ultrasonic imaging
Ultrasound
title Knee cartilage segmentation and thickness computation from ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knee%20cartilage%20segmentation%20and%20thickness%20computation%20from%20ultrasound%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Faisal,%20Amir&rft.date=2018-04-01&rft.volume=56&rft.issue=4&rft.spage=657&rft.epage=669&rft.pages=657-669&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-017-1710-2&rft_dat=%3Cproquest_cross%3E1933604240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015712479&rft_id=info:pmid/28849317&rfr_iscdi=true