IMPROVING ESTIMATES OF BIRD DENSITY USING MULTIPLE- COVARIATE DISTANCE SAMPLING
Inferences based on counts adjusted for detectability represent a marked improvement over unadjusted counts, which provide no information about true population density and rely on untestable and unrealistic assumptions about constant detectability for inferring differences in density over time or sp...
Gespeichert in:
Veröffentlicht in: | The Auk 2007-10, Vol.124 (4), p.1229-1243 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1243 |
---|---|
container_issue | 4 |
container_start_page | 1229 |
container_title | The Auk |
container_volume | 124 |
creator | Marques, Tiago A Thomas, Len Fancy, Steven G Buckland, Stephen T |
description | Inferences based on counts adjusted for detectability represent a marked improvement over unadjusted counts, which provide no information about true population density and rely on untestable and unrealistic assumptions about constant detectability for inferring differences in density over time or space. Distance sampling is a widely used method to estimate detectability and therefore density. In the standard method, we model the probability of detecting a bird as a function of distance alone. Here, we describe methods that allow us to model probability of detection as a function of additional covariates—an approach available in DISTANCE, version 5.0 (Thomas et al. 2005) but still not widely applied. The main use of these methods is to increase the reliability of density estimates made on subsets of the whole data (e.g., estimates for different habitats, treatments, periods, or species), to increase precision of density estimates or to allow inferences about the covariates themselves. We present a case study of the use of multiple covariates in an analysis of a point-transect survey of Hawaii Amakihi (Hemignathus virens). Amélioration des estimations de densité d’oiseaux par l’utilisation de l’échantillonnage par la distance avec covariables multiples |
doi_str_mv | 10.1642/0004-8038(2007)124[1229:IEOBDU]2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19334674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25150384</jstor_id><sourcerecordid>25150384</sourcerecordid><originalsourceid>FETCH-LOGICAL-b496t-b8cc7abf9a9895d3e8a44156e73616824a952bddaef53048b09db588d5c2aee23</originalsourceid><addsrcrecordid>eNqdkEFLwzAYhoMoOKc_QSgeRA-dSZq0iZ66rs5At461E0QkpG0GG9s6m-3gvzel4sGjpxC-53vz5gHgAcEB8gl-gBASl0GP3WEIg3uEyTvCmD-KOB2OFh94AAdR-oRPQA9xj7kEU3IKer9b5-DCmLW9Ush4D6RiMpunr2I6duIsF5MwjzMnfXaGYj5yRvE0E_mbs8ja-WSR5GKWxK4Tpa_hXFjUGYksD6dR7GThZJZY6hKcLdXG6Kufsw8Wz3EevbhJOhZRmLgF4f7BLVhZBqpYcsUZp5WnmSIEUV8Hno98honiFBdVpfSSepCwAvKqoIxVtMRKa-z1wW2Xu2_qz6M2B7ldmVJvNmqn66OR9u8e8QNiwZs_4Lo-NjvbzTI-oQTzwELjDiqb2phGL-W-WW1V8yURlK112fqTrT_ZWpfWumyty866tICMUtn2uu6S1uZQN78xmCJql9s6cTcvVnW90_9-5xubj47j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196454297</pqid></control><display><type>article</type><title>IMPROVING ESTIMATES OF BIRD DENSITY USING MULTIPLE- COVARIATE DISTANCE SAMPLING</title><source>BioOne Complete</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Marques, Tiago A ; Thomas, Len ; Fancy, Steven G ; Buckland, Stephen T</creator><contributor>Handel, C. M</contributor><creatorcontrib>Marques, Tiago A ; Thomas, Len ; Fancy, Steven G ; Buckland, Stephen T ; Handel, C. M</creatorcontrib><description>Inferences based on counts adjusted for detectability represent a marked improvement over unadjusted counts, which provide no information about true population density and rely on untestable and unrealistic assumptions about constant detectability for inferring differences in density over time or space. Distance sampling is a widely used method to estimate detectability and therefore density. In the standard method, we model the probability of detecting a bird as a function of distance alone. Here, we describe methods that allow us to model probability of detection as a function of additional covariates—an approach available in DISTANCE, version 5.0 (Thomas et al. 2005) but still not widely applied. The main use of these methods is to increase the reliability of density estimates made on subsets of the whole data (e.g., estimates for different habitats, treatments, periods, or species), to increase precision of density estimates or to allow inferences about the covariates themselves. We present a case study of the use of multiple covariates in an analysis of a point-transect survey of Hawaii Amakihi (Hemignathus virens). Amélioration des estimations de densité d’oiseaux par l’utilisation de l’échantillonnage par la distance avec covariables multiples</description><identifier>ISSN: 0004-8038</identifier><identifier>EISSN: 1938-4254</identifier><identifier>EISSN: 2732-4613</identifier><identifier>DOI: 10.1642/0004-8038(2007)124[1229:IEOBDU]2.0.CO;2</identifier><language>eng</language><publisher>Waco: American Ornithologists' Union</publisher><subject>Analytical estimating ; Animal populations ; Aves ; Birds ; covariates ; Density estimation ; detectability ; detection function ; distance sampling ; Estimates ; Estimation methods ; Hemignathus virens ; line transects ; Mathematical independent variables ; Modeling ; Parametric models ; Point estimators ; point transects ; Population density ; Sample size ; Series expansion ; Truncation</subject><ispartof>The Auk, 2007-10, Vol.124 (4), p.1229-1243</ispartof><rights>The American Ornithologists' Union</rights><rights>Copyright 2007 The American Ornithologists' Union</rights><rights>Copyright American Ornithologists' Union Oct 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b496t-b8cc7abf9a9895d3e8a44156e73616824a952bddaef53048b09db588d5c2aee23</citedby><cites>FETCH-LOGICAL-b496t-b8cc7abf9a9895d3e8a44156e73616824a952bddaef53048b09db588d5c2aee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1642/0004-8038(2007)124[1229:IEOBDU]2.0.CO;2$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25150384$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,26957,27903,27904,52341,57995,58228</link.rule.ids></links><search><contributor>Handel, C. M</contributor><creatorcontrib>Marques, Tiago A</creatorcontrib><creatorcontrib>Thomas, Len</creatorcontrib><creatorcontrib>Fancy, Steven G</creatorcontrib><creatorcontrib>Buckland, Stephen T</creatorcontrib><title>IMPROVING ESTIMATES OF BIRD DENSITY USING MULTIPLE- COVARIATE DISTANCE SAMPLING</title><title>The Auk</title><description>Inferences based on counts adjusted for detectability represent a marked improvement over unadjusted counts, which provide no information about true population density and rely on untestable and unrealistic assumptions about constant detectability for inferring differences in density over time or space. Distance sampling is a widely used method to estimate detectability and therefore density. In the standard method, we model the probability of detecting a bird as a function of distance alone. Here, we describe methods that allow us to model probability of detection as a function of additional covariates—an approach available in DISTANCE, version 5.0 (Thomas et al. 2005) but still not widely applied. The main use of these methods is to increase the reliability of density estimates made on subsets of the whole data (e.g., estimates for different habitats, treatments, periods, or species), to increase precision of density estimates or to allow inferences about the covariates themselves. We present a case study of the use of multiple covariates in an analysis of a point-transect survey of Hawaii Amakihi (Hemignathus virens). Amélioration des estimations de densité d’oiseaux par l’utilisation de l’échantillonnage par la distance avec covariables multiples</description><subject>Analytical estimating</subject><subject>Animal populations</subject><subject>Aves</subject><subject>Birds</subject><subject>covariates</subject><subject>Density estimation</subject><subject>detectability</subject><subject>detection function</subject><subject>distance sampling</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Hemignathus virens</subject><subject>line transects</subject><subject>Mathematical independent variables</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Point estimators</subject><subject>point transects</subject><subject>Population density</subject><subject>Sample size</subject><subject>Series expansion</subject><subject>Truncation</subject><issn>0004-8038</issn><issn>1938-4254</issn><issn>2732-4613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqdkEFLwzAYhoMoOKc_QSgeRA-dSZq0iZ66rs5At461E0QkpG0GG9s6m-3gvzel4sGjpxC-53vz5gHgAcEB8gl-gBASl0GP3WEIg3uEyTvCmD-KOB2OFh94AAdR-oRPQA9xj7kEU3IKer9b5-DCmLW9Ush4D6RiMpunr2I6duIsF5MwjzMnfXaGYj5yRvE0E_mbs8ja-WSR5GKWxK4Tpa_hXFjUGYksD6dR7GThZJZY6hKcLdXG6Kufsw8Wz3EevbhJOhZRmLgF4f7BLVhZBqpYcsUZp5WnmSIEUV8Hno98honiFBdVpfSSepCwAvKqoIxVtMRKa-z1wW2Xu2_qz6M2B7ldmVJvNmqn66OR9u8e8QNiwZs_4Lo-NjvbzTI-oQTzwELjDiqb2phGL-W-WW1V8yURlK112fqTrT_ZWpfWumyty866tICMUtn2uu6S1uZQN78xmCJql9s6cTcvVnW90_9-5xubj47j</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Marques, Tiago A</creator><creator>Thomas, Len</creator><creator>Fancy, Steven G</creator><creator>Buckland, Stephen T</creator><general>American Ornithologists' Union</general><general>American Ornithological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U9</scope><scope>7XB</scope><scope>88A</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope></search><sort><creationdate>20071001</creationdate><title>IMPROVING ESTIMATES OF BIRD DENSITY USING MULTIPLE- COVARIATE DISTANCE SAMPLING</title><author>Marques, Tiago A ; Thomas, Len ; Fancy, Steven G ; Buckland, Stephen T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b496t-b8cc7abf9a9895d3e8a44156e73616824a952bddaef53048b09db588d5c2aee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical estimating</topic><topic>Animal populations</topic><topic>Aves</topic><topic>Birds</topic><topic>covariates</topic><topic>Density estimation</topic><topic>detectability</topic><topic>detection function</topic><topic>distance sampling</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Hemignathus virens</topic><topic>line transects</topic><topic>Mathematical independent variables</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Point estimators</topic><topic>point transects</topic><topic>Population density</topic><topic>Sample size</topic><topic>Series expansion</topic><topic>Truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marques, Tiago A</creatorcontrib><creatorcontrib>Thomas, Len</creatorcontrib><creatorcontrib>Fancy, Steven G</creatorcontrib><creatorcontrib>Buckland, Stephen T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><jtitle>The Auk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marques, Tiago A</au><au>Thomas, Len</au><au>Fancy, Steven G</au><au>Buckland, Stephen T</au><au>Handel, C. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMPROVING ESTIMATES OF BIRD DENSITY USING MULTIPLE- COVARIATE DISTANCE SAMPLING</atitle><jtitle>The Auk</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>124</volume><issue>4</issue><spage>1229</spage><epage>1243</epage><pages>1229-1243</pages><issn>0004-8038</issn><eissn>1938-4254</eissn><eissn>2732-4613</eissn><abstract>Inferences based on counts adjusted for detectability represent a marked improvement over unadjusted counts, which provide no information about true population density and rely on untestable and unrealistic assumptions about constant detectability for inferring differences in density over time or space. Distance sampling is a widely used method to estimate detectability and therefore density. In the standard method, we model the probability of detecting a bird as a function of distance alone. Here, we describe methods that allow us to model probability of detection as a function of additional covariates—an approach available in DISTANCE, version 5.0 (Thomas et al. 2005) but still not widely applied. The main use of these methods is to increase the reliability of density estimates made on subsets of the whole data (e.g., estimates for different habitats, treatments, periods, or species), to increase precision of density estimates or to allow inferences about the covariates themselves. We present a case study of the use of multiple covariates in an analysis of a point-transect survey of Hawaii Amakihi (Hemignathus virens). Amélioration des estimations de densité d’oiseaux par l’utilisation de l’échantillonnage par la distance avec covariables multiples</abstract><cop>Waco</cop><pub>American Ornithologists' Union</pub><doi>10.1642/0004-8038(2007)124[1229:IEOBDU]2.0.CO;2</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-8038 |
ispartof | The Auk, 2007-10, Vol.124 (4), p.1229-1243 |
issn | 0004-8038 1938-4254 2732-4613 |
language | eng |
recordid | cdi_proquest_miscellaneous_19334674 |
source | BioOne Complete; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
subjects | Analytical estimating Animal populations Aves Birds covariates Density estimation detectability detection function distance sampling Estimates Estimation methods Hemignathus virens line transects Mathematical independent variables Modeling Parametric models Point estimators point transects Population density Sample size Series expansion Truncation |
title | IMPROVING ESTIMATES OF BIRD DENSITY USING MULTIPLE- COVARIATE DISTANCE SAMPLING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMPROVING%20ESTIMATES%20OF%20BIRD%20DENSITY%20USING%20MULTIPLE-%20COVARIATE%20DISTANCE%20SAMPLING&rft.jtitle=The%20Auk&rft.au=Marques,%20Tiago%20A&rft.date=2007-10-01&rft.volume=124&rft.issue=4&rft.spage=1229&rft.epage=1243&rft.pages=1229-1243&rft.issn=0004-8038&rft.eissn=1938-4254&rft_id=info:doi/10.1642/0004-8038(2007)124%5B1229:IEOBDU%5D2.0.CO;2&rft_dat=%3Cjstor_proqu%3E25150384%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196454297&rft_id=info:pmid/&rft_jstor_id=25150384&rfr_iscdi=true |