What the Whiskers Tell the Brain
•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry. A fundamental question in the investigation of an...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2018-01, Vol.368, p.95-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | |
container_start_page | 95 |
container_title | Neuroscience |
container_volume | 368 |
creator | Campagner, Dario Evans, Mathew H. Loft, Michaela S.E. Petersen, Rasmus S. |
description | •With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry.
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex. |
doi_str_mv | 10.1016/j.neuroscience.2017.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933229868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452217305638</els_id><sourcerecordid>1933229868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEYmPwF9DEiUtLvptwg_EpTeIyxDHKUkfL2FpIWiT-PRkbiCO-2LJe-7UfhM4ILgkm8mJZNtDHNrkAjYOSYlKVWJUYiz00JKpiRSU430dDzLAsuKB0gI5SWuIcgrNDNKBKcaa1GqLxy8J2424BuQjpFWIaz2C1-u5cRxuaY3Tg7SrByS6P0PPd7WzyUEyf7h8nV9PCcUa7gnBciYozL73yVnoPWNfasrmkuPZyrkGDqqkmREhFNZOOaVsx8LSmVoBkI3S-3fsW2_ceUmfWIbl8im2g7ZMhmjFKtZIqSy-3UpchpAjevMWwtvHTEGw2hMzS_CVkNoQMVia_n4dPdz79fA317-gPkiy42Qogf_sRIJrdmjpEcJ2p2_Afny-eu3xF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933229868</pqid></control><display><type>article</type><title>What the Whiskers Tell the Brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Campagner, Dario ; Evans, Mathew H. ; Loft, Michaela S.E. ; Petersen, Rasmus S.</creator><creatorcontrib>Campagner, Dario ; Evans, Mathew H. ; Loft, Michaela S.E. ; Petersen, Rasmus S.</creatorcontrib><description>•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry.
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2017.08.005</identifier><identifier>PMID: 28843998</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Afferent Pathways - physiology ; Animals ; barrel cortex ; Biomechanical Phenomena - physiology ; neural coding ; Somatosensory Cortex - physiology ; somatosensory system ; Touch Perception - physiology ; trigeminal ganglion ; Trigeminal Ganglion - physiology ; Vibrissae - physiology ; whisker mechanics ; whisker system</subject><ispartof>Neuroscience, 2018-01, Vol.368, p.95-108</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2017. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</citedby><cites>FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2017.08.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28843998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campagner, Dario</creatorcontrib><creatorcontrib>Evans, Mathew H.</creatorcontrib><creatorcontrib>Loft, Michaela S.E.</creatorcontrib><creatorcontrib>Petersen, Rasmus S.</creatorcontrib><title>What the Whiskers Tell the Brain</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry.
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.</description><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>barrel cortex</subject><subject>Biomechanical Phenomena - physiology</subject><subject>neural coding</subject><subject>Somatosensory Cortex - physiology</subject><subject>somatosensory system</subject><subject>Touch Perception - physiology</subject><subject>trigeminal ganglion</subject><subject>Trigeminal Ganglion - physiology</subject><subject>Vibrissae - physiology</subject><subject>whisker mechanics</subject><subject>whisker system</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PwzAMhiMEYmPwF9DEiUtLvptwg_EpTeIyxDHKUkfL2FpIWiT-PRkbiCO-2LJe-7UfhM4ILgkm8mJZNtDHNrkAjYOSYlKVWJUYiz00JKpiRSU430dDzLAsuKB0gI5SWuIcgrNDNKBKcaa1GqLxy8J2424BuQjpFWIaz2C1-u5cRxuaY3Tg7SrByS6P0PPd7WzyUEyf7h8nV9PCcUa7gnBciYozL73yVnoPWNfasrmkuPZyrkGDqqkmREhFNZOOaVsx8LSmVoBkI3S-3fsW2_ceUmfWIbl8im2g7ZMhmjFKtZIqSy-3UpchpAjevMWwtvHTEGw2hMzS_CVkNoQMVia_n4dPdz79fA317-gPkiy42Qogf_sRIJrdmjpEcJ2p2_Afny-eu3xF</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Campagner, Dario</creator><creator>Evans, Mathew H.</creator><creator>Loft, Michaela S.E.</creator><creator>Petersen, Rasmus S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180101</creationdate><title>What the Whiskers Tell the Brain</title><author>Campagner, Dario ; Evans, Mathew H. ; Loft, Michaela S.E. ; Petersen, Rasmus S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>barrel cortex</topic><topic>Biomechanical Phenomena - physiology</topic><topic>neural coding</topic><topic>Somatosensory Cortex - physiology</topic><topic>somatosensory system</topic><topic>Touch Perception - physiology</topic><topic>trigeminal ganglion</topic><topic>Trigeminal Ganglion - physiology</topic><topic>Vibrissae - physiology</topic><topic>whisker mechanics</topic><topic>whisker system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campagner, Dario</creatorcontrib><creatorcontrib>Evans, Mathew H.</creatorcontrib><creatorcontrib>Loft, Michaela S.E.</creatorcontrib><creatorcontrib>Petersen, Rasmus S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campagner, Dario</au><au>Evans, Mathew H.</au><au>Loft, Michaela S.E.</au><au>Petersen, Rasmus S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What the Whiskers Tell the Brain</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>368</volume><spage>95</spage><epage>108</epage><pages>95-108</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><abstract>•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry.
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28843998</pmid><doi>10.1016/j.neuroscience.2017.08.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 2018-01, Vol.368, p.95-108 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_proquest_miscellaneous_1933229868 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Afferent Pathways - physiology Animals barrel cortex Biomechanical Phenomena - physiology neural coding Somatosensory Cortex - physiology somatosensory system Touch Perception - physiology trigeminal ganglion Trigeminal Ganglion - physiology Vibrissae - physiology whisker mechanics whisker system |
title | What the Whiskers Tell the Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20the%20Whiskers%20Tell%20the%20Brain&rft.jtitle=Neuroscience&rft.au=Campagner,%20Dario&rft.date=2018-01-01&rft.volume=368&rft.spage=95&rft.epage=108&rft.pages=95-108&rft.issn=0306-4522&rft.eissn=1873-7544&rft_id=info:doi/10.1016/j.neuroscience.2017.08.005&rft_dat=%3Cproquest_cross%3E1933229868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933229868&rft_id=info:pmid/28843998&rft_els_id=S0306452217305638&rfr_iscdi=true |