What the Whiskers Tell the Brain

•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry. A fundamental question in the investigation of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2018-01, Vol.368, p.95-108
Hauptverfasser: Campagner, Dario, Evans, Mathew H., Loft, Michaela S.E., Petersen, Rasmus S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 95
container_title Neuroscience
container_volume 368
creator Campagner, Dario
Evans, Mathew H.
Loft, Michaela S.E.
Petersen, Rasmus S.
description •With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry. A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.
doi_str_mv 10.1016/j.neuroscience.2017.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1933229868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452217305638</els_id><sourcerecordid>1933229868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEYmPwF9DEiUtLvptwg_EpTeIyxDHKUkfL2FpIWiT-PRkbiCO-2LJe-7UfhM4ILgkm8mJZNtDHNrkAjYOSYlKVWJUYiz00JKpiRSU430dDzLAsuKB0gI5SWuIcgrNDNKBKcaa1GqLxy8J2424BuQjpFWIaz2C1-u5cRxuaY3Tg7SrByS6P0PPd7WzyUEyf7h8nV9PCcUa7gnBciYozL73yVnoPWNfasrmkuPZyrkGDqqkmREhFNZOOaVsx8LSmVoBkI3S-3fsW2_ceUmfWIbl8im2g7ZMhmjFKtZIqSy-3UpchpAjevMWwtvHTEGw2hMzS_CVkNoQMVia_n4dPdz79fA317-gPkiy42Qogf_sRIJrdmjpEcJ2p2_Afny-eu3xF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933229868</pqid></control><display><type>article</type><title>What the Whiskers Tell the Brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Campagner, Dario ; Evans, Mathew H. ; Loft, Michaela S.E. ; Petersen, Rasmus S.</creator><creatorcontrib>Campagner, Dario ; Evans, Mathew H. ; Loft, Michaela S.E. ; Petersen, Rasmus S.</creatorcontrib><description>•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry. A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2017.08.005</identifier><identifier>PMID: 28843998</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Afferent Pathways - physiology ; Animals ; barrel cortex ; Biomechanical Phenomena - physiology ; neural coding ; Somatosensory Cortex - physiology ; somatosensory system ; Touch Perception - physiology ; trigeminal ganglion ; Trigeminal Ganglion - physiology ; Vibrissae - physiology ; whisker mechanics ; whisker system</subject><ispartof>Neuroscience, 2018-01, Vol.368, p.95-108</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2017. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</citedby><cites>FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2017.08.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28843998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campagner, Dario</creatorcontrib><creatorcontrib>Evans, Mathew H.</creatorcontrib><creatorcontrib>Loft, Michaela S.E.</creatorcontrib><creatorcontrib>Petersen, Rasmus S.</creatorcontrib><title>What the Whiskers Tell the Brain</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry. A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.</description><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>barrel cortex</subject><subject>Biomechanical Phenomena - physiology</subject><subject>neural coding</subject><subject>Somatosensory Cortex - physiology</subject><subject>somatosensory system</subject><subject>Touch Perception - physiology</subject><subject>trigeminal ganglion</subject><subject>Trigeminal Ganglion - physiology</subject><subject>Vibrissae - physiology</subject><subject>whisker mechanics</subject><subject>whisker system</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1PwzAMhiMEYmPwF9DEiUtLvptwg_EpTeIyxDHKUkfL2FpIWiT-PRkbiCO-2LJe-7UfhM4ILgkm8mJZNtDHNrkAjYOSYlKVWJUYiz00JKpiRSU430dDzLAsuKB0gI5SWuIcgrNDNKBKcaa1GqLxy8J2424BuQjpFWIaz2C1-u5cRxuaY3Tg7SrByS6P0PPd7WzyUEyf7h8nV9PCcUa7gnBciYozL73yVnoPWNfasrmkuPZyrkGDqqkmREhFNZOOaVsx8LSmVoBkI3S-3fsW2_ceUmfWIbl8im2g7ZMhmjFKtZIqSy-3UpchpAjevMWwtvHTEGw2hMzS_CVkNoQMVia_n4dPdz79fA317-gPkiy42Qogf_sRIJrdmjpEcJ2p2_Afny-eu3xF</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Campagner, Dario</creator><creator>Evans, Mathew H.</creator><creator>Loft, Michaela S.E.</creator><creator>Petersen, Rasmus S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180101</creationdate><title>What the Whiskers Tell the Brain</title><author>Campagner, Dario ; Evans, Mathew H. ; Loft, Michaela S.E. ; Petersen, Rasmus S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-14075743f6f8fa6ffe09d9a3b620df6b9e9e8d29115682936c39a73ef2d2a5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>barrel cortex</topic><topic>Biomechanical Phenomena - physiology</topic><topic>neural coding</topic><topic>Somatosensory Cortex - physiology</topic><topic>somatosensory system</topic><topic>Touch Perception - physiology</topic><topic>trigeminal ganglion</topic><topic>Trigeminal Ganglion - physiology</topic><topic>Vibrissae - physiology</topic><topic>whisker mechanics</topic><topic>whisker system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campagner, Dario</creatorcontrib><creatorcontrib>Evans, Mathew H.</creatorcontrib><creatorcontrib>Loft, Michaela S.E.</creatorcontrib><creatorcontrib>Petersen, Rasmus S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campagner, Dario</au><au>Evans, Mathew H.</au><au>Loft, Michaela S.E.</au><au>Petersen, Rasmus S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What the Whiskers Tell the Brain</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>368</volume><spage>95</spage><epage>108</epage><pages>95-108</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><abstract>•With new methods, mechanical forces acting on whiskers can be estimated during behavior.•This has yielded new understanding of tactile coding, rooted in mechanics.•Study of primary afferents helps to elucidate function of thalamo-cortical circuitry. A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway – the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding ‘what the whiskers tell the brain’ sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28843998</pmid><doi>10.1016/j.neuroscience.2017.08.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2018-01, Vol.368, p.95-108
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_1933229868
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Afferent Pathways - physiology
Animals
barrel cortex
Biomechanical Phenomena - physiology
neural coding
Somatosensory Cortex - physiology
somatosensory system
Touch Perception - physiology
trigeminal ganglion
Trigeminal Ganglion - physiology
Vibrissae - physiology
whisker mechanics
whisker system
title What the Whiskers Tell the Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20the%20Whiskers%20Tell%20the%20Brain&rft.jtitle=Neuroscience&rft.au=Campagner,%20Dario&rft.date=2018-01-01&rft.volume=368&rft.spage=95&rft.epage=108&rft.pages=95-108&rft.issn=0306-4522&rft.eissn=1873-7544&rft_id=info:doi/10.1016/j.neuroscience.2017.08.005&rft_dat=%3Cproquest_cross%3E1933229868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933229868&rft_id=info:pmid/28843998&rft_els_id=S0306452217305638&rfr_iscdi=true