MODELING THE CLIMATIC AND SUBSURFACE STRATIGRAPHY CONTROLS ON THE HYDROLOGY OF A CAROLINA BAY WETLAND IN SOUTH CAROLINA, USA
Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model...
Gespeichert in:
Veröffentlicht in: | Wetlands (Wilmington, N.C.) N.C.), 2006-06, Vol.26 (2), p.567-580 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 580 |
---|---|
container_issue | 2 |
container_start_page | 567 |
container_title | Wetlands (Wilmington, N.C.) |
container_volume | 26 |
creator | Sun, Ge Callahan, Timothy J. Pyzoha, Jennifer E. Trettin, Carl C. |
description | Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of water-table data and (2) to use the model to understand how the landscape position and the site stratigraphy affect ground-water flow direction. The research site is located in Bamberg County, South Carolina on the Middle Coastal Plain of the southeastern U.S. (32.88° N, 81.12° W). Model calibration (1998) and validation (1997, 1999–2003) data span a wet period and a long drought period, which allowed us to test the model for a wide range of weather conditions. The major water input to the wetland is rainfall, and output from the wetland is dominated by evapotranspiration. However, the Carolina bay is a flow-through wetland, receiving ground water from the adjacent upland, but recharging the ground-water to lower topographic areas, especially during wet periods in winter months. Hypothetical simulations suggest that ground-water flow direction is controlled by the gradient of the underlying hydrologic restricting layer beneath the wetland-upland continuum, not solely by the topographic gradient of the land surface. Ground-water flow may change directions during transition periods of wetland hydroperiod that is controlled by the balance of precipitation and evapotranspiration, and such changes depend on the underlying soil stratigraphy of the wetland-upland continuum. |
doi_str_mv | 10.1672/0277-5212(2006)26[567:MTCASS]2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19329693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919718457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-b16dfa416c97091365b9e12a0f18aee4219f96fc49bb86e89fa53292eb5dc3d93</originalsourceid><addsrcrecordid>eNqdkdFq2zAUhsXYYFm3Z6hgMDaYM-lYlqP1SlWc2ODYJbYZYQwhO_JISePObi4Ge_jJdenFLncljs53PonzI-RRMqc8hC8EwtALgMJHIIR_Av494OHXTalkUfyAOZmr_ApeoBkVzPc4MP4SzZ5nXqM3w3BLCOUAdIb-bPJllCbZGpdxhFWabGSZKCyzJS6q66LarqSKcFFu3fV6K2_iHVZ5Vm7ztMB59jgU75auzNc7nK-wxEq6KskkvpY7_C0q09GVZLjIqzJ-7n7GVSHfoletOQ723dN5gapVVKrYc7ZEydQzLKAPXk35vjWM8kaERFCfB7WwFAxp6cJYy4CKVvC2YaKuF9wuRGsCHwTYOtg3_l74F-jD5L3vu19nOzzou8PQ2OPRnGx3HjQVDufCd-D7f8Db7tyf3N80CCpCumBB6Khoopq-G4betvq-P9yZ_remRI8J6XHbety2HhPSwLVLSE8JadfWKtfgPJeTpzWdNj_7w6CrAgj1CQlDxhhxhJqI-tB1J_uf7_wFVVqZYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919718457</pqid></control><display><type>article</type><title>MODELING THE CLIMATIC AND SUBSURFACE STRATIGRAPHY CONTROLS ON THE HYDROLOGY OF A CAROLINA BAY WETLAND IN SOUTH CAROLINA, USA</title><source>SpringerNature Journals</source><source>BioOne Complete</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Sun, Ge ; Callahan, Timothy J. ; Pyzoha, Jennifer E. ; Trettin, Carl C.</creator><creatorcontrib>Sun, Ge ; Callahan, Timothy J. ; Pyzoha, Jennifer E. ; Trettin, Carl C.</creatorcontrib><description>Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of water-table data and (2) to use the model to understand how the landscape position and the site stratigraphy affect ground-water flow direction. The research site is located in Bamberg County, South Carolina on the Middle Coastal Plain of the southeastern U.S. (32.88° N, 81.12° W). Model calibration (1998) and validation (1997, 1999–2003) data span a wet period and a long drought period, which allowed us to test the model for a wide range of weather conditions. The major water input to the wetland is rainfall, and output from the wetland is dominated by evapotranspiration. However, the Carolina bay is a flow-through wetland, receiving ground water from the adjacent upland, but recharging the ground-water to lower topographic areas, especially during wet periods in winter months. Hypothetical simulations suggest that ground-water flow direction is controlled by the gradient of the underlying hydrologic restricting layer beneath the wetland-upland continuum, not solely by the topographic gradient of the land surface. Ground-water flow may change directions during transition periods of wetland hydroperiod that is controlled by the balance of precipitation and evapotranspiration, and such changes depend on the underlying soil stratigraphy of the wetland-upland continuum.</description><identifier>ISSN: 0277-5212</identifier><identifier>EISSN: 1943-6246</identifier><identifier>DOI: 10.1672/0277-5212(2006)26[567:MTCASS]2.0.CO;2</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Bays ; Carolina bays ; Coastal plains ; CONTENTS ; Drought ; Evapotranspiration ; Forest hydrology ; Geologic depressions ; geomorphology ; ground water ; Groundwater ; Groundwater flow ; Hydrologic data ; Hydrologic models ; Hydrology ; landscape position ; lowland forests ; Model testing ; modeling ; Rainfall ; Receiving waters ; simulation models ; Stratigraphy ; subsurface layers ; Swamps ; testing ; Topography ; Water flow ; Water table ; Weather ; wetland hydrology ; wetland soils ; Wetlands</subject><ispartof>Wetlands (Wilmington, N.C.), 2006-06, Vol.26 (2), p.567-580</ispartof><rights>The Society of Wetland Scientists</rights><rights>Society of Wetland Scientists 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-b16dfa416c97091365b9e12a0f18aee4219f96fc49bb86e89fa53292eb5dc3d93</citedby><cites>FETCH-LOGICAL-a451t-b16dfa416c97091365b9e12a0f18aee4219f96fc49bb86e89fa53292eb5dc3d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1672/0277-5212(2006)26[567:MTCASS]2.0.CO;2$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919718457?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,26978,27924,27925,33744,33745,43805,52363,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Sun, Ge</creatorcontrib><creatorcontrib>Callahan, Timothy J.</creatorcontrib><creatorcontrib>Pyzoha, Jennifer E.</creatorcontrib><creatorcontrib>Trettin, Carl C.</creatorcontrib><title>MODELING THE CLIMATIC AND SUBSURFACE STRATIGRAPHY CONTROLS ON THE HYDROLOGY OF A CAROLINA BAY WETLAND IN SOUTH CAROLINA, USA</title><title>Wetlands (Wilmington, N.C.)</title><description>Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of water-table data and (2) to use the model to understand how the landscape position and the site stratigraphy affect ground-water flow direction. The research site is located in Bamberg County, South Carolina on the Middle Coastal Plain of the southeastern U.S. (32.88° N, 81.12° W). Model calibration (1998) and validation (1997, 1999–2003) data span a wet period and a long drought period, which allowed us to test the model for a wide range of weather conditions. The major water input to the wetland is rainfall, and output from the wetland is dominated by evapotranspiration. However, the Carolina bay is a flow-through wetland, receiving ground water from the adjacent upland, but recharging the ground-water to lower topographic areas, especially during wet periods in winter months. Hypothetical simulations suggest that ground-water flow direction is controlled by the gradient of the underlying hydrologic restricting layer beneath the wetland-upland continuum, not solely by the topographic gradient of the land surface. Ground-water flow may change directions during transition periods of wetland hydroperiod that is controlled by the balance of precipitation and evapotranspiration, and such changes depend on the underlying soil stratigraphy of the wetland-upland continuum.</description><subject>Bays</subject><subject>Carolina bays</subject><subject>Coastal plains</subject><subject>CONTENTS</subject><subject>Drought</subject><subject>Evapotranspiration</subject><subject>Forest hydrology</subject><subject>Geologic depressions</subject><subject>geomorphology</subject><subject>ground water</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Hydrologic data</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>landscape position</subject><subject>lowland forests</subject><subject>Model testing</subject><subject>modeling</subject><subject>Rainfall</subject><subject>Receiving waters</subject><subject>simulation models</subject><subject>Stratigraphy</subject><subject>subsurface layers</subject><subject>Swamps</subject><subject>testing</subject><subject>Topography</subject><subject>Water flow</subject><subject>Water table</subject><subject>Weather</subject><subject>wetland hydrology</subject><subject>wetland soils</subject><subject>Wetlands</subject><issn>0277-5212</issn><issn>1943-6246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqdkdFq2zAUhsXYYFm3Z6hgMDaYM-lYlqP1SlWc2ODYJbYZYQwhO_JISePObi4Ge_jJdenFLncljs53PonzI-RRMqc8hC8EwtALgMJHIIR_Av494OHXTalkUfyAOZmr_ApeoBkVzPc4MP4SzZ5nXqM3w3BLCOUAdIb-bPJllCbZGpdxhFWabGSZKCyzJS6q66LarqSKcFFu3fV6K2_iHVZ5Vm7ztMB59jgU75auzNc7nK-wxEq6KskkvpY7_C0q09GVZLjIqzJ-7n7GVSHfoletOQ723dN5gapVVKrYc7ZEydQzLKAPXk35vjWM8kaERFCfB7WwFAxp6cJYy4CKVvC2YaKuF9wuRGsCHwTYOtg3_l74F-jD5L3vu19nOzzou8PQ2OPRnGx3HjQVDufCd-D7f8Db7tyf3N80CCpCumBB6Khoopq-G4betvq-P9yZ_remRI8J6XHbety2HhPSwLVLSE8JadfWKtfgPJeTpzWdNj_7w6CrAgj1CQlDxhhxhJqI-tB1J_uf7_wFVVqZYQ</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Sun, Ge</creator><creator>Callahan, Timothy J.</creator><creator>Pyzoha, Jennifer E.</creator><creator>Trettin, Carl C.</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20060601</creationdate><title>MODELING THE CLIMATIC AND SUBSURFACE STRATIGRAPHY CONTROLS ON THE HYDROLOGY OF A CAROLINA BAY WETLAND IN SOUTH CAROLINA, USA</title><author>Sun, Ge ; Callahan, Timothy J. ; Pyzoha, Jennifer E. ; Trettin, Carl C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-b16dfa416c97091365b9e12a0f18aee4219f96fc49bb86e89fa53292eb5dc3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bays</topic><topic>Carolina bays</topic><topic>Coastal plains</topic><topic>CONTENTS</topic><topic>Drought</topic><topic>Evapotranspiration</topic><topic>Forest hydrology</topic><topic>Geologic depressions</topic><topic>geomorphology</topic><topic>ground water</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Hydrologic data</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>landscape position</topic><topic>lowland forests</topic><topic>Model testing</topic><topic>modeling</topic><topic>Rainfall</topic><topic>Receiving waters</topic><topic>simulation models</topic><topic>Stratigraphy</topic><topic>subsurface layers</topic><topic>Swamps</topic><topic>testing</topic><topic>Topography</topic><topic>Water flow</topic><topic>Water table</topic><topic>Weather</topic><topic>wetland hydrology</topic><topic>wetland soils</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ge</creatorcontrib><creatorcontrib>Callahan, Timothy J.</creatorcontrib><creatorcontrib>Pyzoha, Jennifer E.</creatorcontrib><creatorcontrib>Trettin, Carl C.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wetlands (Wilmington, N.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ge</au><au>Callahan, Timothy J.</au><au>Pyzoha, Jennifer E.</au><au>Trettin, Carl C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING THE CLIMATIC AND SUBSURFACE STRATIGRAPHY CONTROLS ON THE HYDROLOGY OF A CAROLINA BAY WETLAND IN SOUTH CAROLINA, USA</atitle><jtitle>Wetlands (Wilmington, N.C.)</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>26</volume><issue>2</issue><spage>567</spage><epage>580</epage><pages>567-580</pages><issn>0277-5212</issn><eissn>1943-6246</eissn><abstract>Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of water-table data and (2) to use the model to understand how the landscape position and the site stratigraphy affect ground-water flow direction. The research site is located in Bamberg County, South Carolina on the Middle Coastal Plain of the southeastern U.S. (32.88° N, 81.12° W). Model calibration (1998) and validation (1997, 1999–2003) data span a wet period and a long drought period, which allowed us to test the model for a wide range of weather conditions. The major water input to the wetland is rainfall, and output from the wetland is dominated by evapotranspiration. However, the Carolina bay is a flow-through wetland, receiving ground water from the adjacent upland, but recharging the ground-water to lower topographic areas, especially during wet periods in winter months. Hypothetical simulations suggest that ground-water flow direction is controlled by the gradient of the underlying hydrologic restricting layer beneath the wetland-upland continuum, not solely by the topographic gradient of the land surface. Ground-water flow may change directions during transition periods of wetland hydroperiod that is controlled by the balance of precipitation and evapotranspiration, and such changes depend on the underlying soil stratigraphy of the wetland-upland continuum.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1672/0277-5212(2006)26[567:MTCASS]2.0.CO;2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-5212 |
ispartof | Wetlands (Wilmington, N.C.), 2006-06, Vol.26 (2), p.567-580 |
issn | 0277-5212 1943-6246 |
language | eng |
recordid | cdi_proquest_miscellaneous_19329693 |
source | SpringerNature Journals; BioOne Complete; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Bays Carolina bays Coastal plains CONTENTS Drought Evapotranspiration Forest hydrology Geologic depressions geomorphology ground water Groundwater Groundwater flow Hydrologic data Hydrologic models Hydrology landscape position lowland forests Model testing modeling Rainfall Receiving waters simulation models Stratigraphy subsurface layers Swamps testing Topography Water flow Water table Weather wetland hydrology wetland soils Wetlands |
title | MODELING THE CLIMATIC AND SUBSURFACE STRATIGRAPHY CONTROLS ON THE HYDROLOGY OF A CAROLINA BAY WETLAND IN SOUTH CAROLINA, USA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING%20THE%20CLIMATIC%20AND%20SUBSURFACE%20STRATIGRAPHY%20CONTROLS%20ON%20THE%20HYDROLOGY%20OF%20A%20CAROLINA%20BAY%20WETLAND%20IN%20SOUTH%20CAROLINA,%20USA&rft.jtitle=Wetlands%20(Wilmington,%20N.C.)&rft.au=Sun,%20Ge&rft.date=2006-06-01&rft.volume=26&rft.issue=2&rft.spage=567&rft.epage=580&rft.pages=567-580&rft.issn=0277-5212&rft.eissn=1943-6246&rft_id=info:doi/10.1672/0277-5212(2006)26%5B567:MTCASS%5D2.0.CO;2&rft_dat=%3Cproquest_cross%3E2919718457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919718457&rft_id=info:pmid/&rfr_iscdi=true |