Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium

Haemophilus influenzae type b (Hib), a Gram‐negative capsulated bacterium, is a causative agent of meningitis worldwide. The capsular polysaccharide, a high molecular mass polymer consisting of the repeated units of the polyribosyl‐ribitol‐phosphate, is considered the main virulence factor and it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2017-11, Vol.33 (6), p.1508-1519
Hauptverfasser: da Silva, Mateus Ribeiro, Andreia Freixo Portela, Carla, Maria Ferreira Albani, Silvia, Rizzo de Paiva, Paola, Massako Tanizaki, Martha, Zangirolami, Teresa Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1519
container_issue 6
container_start_page 1508
container_title Biotechnology progress
container_volume 33
creator da Silva, Mateus Ribeiro
Andreia Freixo Portela, Carla
Maria Ferreira Albani, Silvia
Rizzo de Paiva, Paola
Massako Tanizaki, Martha
Zangirolami, Teresa Cristina
description Haemophilus influenzae type b (Hib), a Gram‐negative capsulated bacterium, is a causative agent of meningitis worldwide. The capsular polysaccharide, a high molecular mass polymer consisting of the repeated units of the polyribosyl‐ribitol‐phosphate, is considered the main virulence factor and it is used as an antigen to vaccines, conjugated to a carrier protein. The industrial production of the polysaccharide requires the cultivation of Hib in rich medium, which impacts process costs and product recovery. In this study, a central composite rotational experimental design strategy was used to access the influence of key components of culture medium (soy peptone, yeast extract and glucose) on biomass formation and polysaccharide production in shake‐flasks. The optimized medium formulation, containing half of the usual yeast extract and soytone concentrations, was further validated in batch bioreactor cultivations. High polysaccharide production (∼500 mg/L) was obtained in a cheaper and more competitive production process for use in Hib vaccine production. In addition, simulations of a metabolic model describing Hib central metabolism were used to assess the role of key amino acids on growth. A chemically defined medium supplemented only with amino acids from α‐ketoglutarate and oxaloacetate families as well as phenylalanine was suggested as a promising alternative for reduced acetate accumulation and enhanced polysaccharide production in Hib cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1508–1519, 2017
doi_str_mv 10.1002/btpr.2546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932841971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980687952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3906-d2e9a65ab69704224abf71860ce0b7284e211bba09577de3659774ce70614ffd3</originalsourceid><addsrcrecordid>eNp1kV9L3jAUh8PYmO-cF_sCI7Cb7aKapG3-XG7iVBCUodclaU81kjZdkk7rrV_c1Fd3MdhNDoSH53B-P4Q-UbJPCWEHJk1hn9UVf4M2tGak4KQs36KNFDUvhCrlDvoQ4y0hRBLO3qMdJmVFeC036PHofoJgBxiTdriDaK9HrMcOD5C08c62uHfzff7Sbok24uS9W1_sp2QH-wDYjt0cU7DauQUHcPBHjwmfaBj8dGPdHDORHTA-aMBpmQAbfB38XbrJSzo7Dx_Ru167CHsvcxdd_Ty6PDwpzs6PTw-_nxVtqQgvOgZK81obrgSpGKu06QWVnLRAjGCyAkapMZqoWogOSl4rIaoWBOG06vuu3EVft94p-N8zxNQMNrbgnB7Bz7GhqswWqgTN6Jd_0Fs_h5zBSuUQpVA1y9S3LdUGH2OAvplylDosDSXN2kyzNtOszWT284txNvnsv-RrFRk42AJ31sHyf1Pz4_Li17PyCe3kmvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980687952</pqid></control><display><type>article</type><title>Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>da Silva, Mateus Ribeiro ; Andreia Freixo Portela, Carla ; Maria Ferreira Albani, Silvia ; Rizzo de Paiva, Paola ; Massako Tanizaki, Martha ; Zangirolami, Teresa Cristina</creator><creatorcontrib>da Silva, Mateus Ribeiro ; Andreia Freixo Portela, Carla ; Maria Ferreira Albani, Silvia ; Rizzo de Paiva, Paola ; Massako Tanizaki, Martha ; Zangirolami, Teresa Cristina</creatorcontrib><description>Haemophilus influenzae type b (Hib), a Gram‐negative capsulated bacterium, is a causative agent of meningitis worldwide. The capsular polysaccharide, a high molecular mass polymer consisting of the repeated units of the polyribosyl‐ribitol‐phosphate, is considered the main virulence factor and it is used as an antigen to vaccines, conjugated to a carrier protein. The industrial production of the polysaccharide requires the cultivation of Hib in rich medium, which impacts process costs and product recovery. In this study, a central composite rotational experimental design strategy was used to access the influence of key components of culture medium (soy peptone, yeast extract and glucose) on biomass formation and polysaccharide production in shake‐flasks. The optimized medium formulation, containing half of the usual yeast extract and soytone concentrations, was further validated in batch bioreactor cultivations. High polysaccharide production (∼500 mg/L) was obtained in a cheaper and more competitive production process for use in Hib vaccine production. In addition, simulations of a metabolic model describing Hib central metabolism were used to assess the role of key amino acids on growth. A chemically defined medium supplemented only with amino acids from α‐ketoglutarate and oxaloacetate families as well as phenylalanine was suggested as a promising alternative for reduced acetate accumulation and enhanced polysaccharide production in Hib cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1508–1519, 2017</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2546</identifier><identifier>PMID: 28840658</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Amino acids ; Bioreactors ; capsular polysaccharide ; central composite rotational design (CCRD) ; Composite materials ; Computer simulation ; Cultivation ; Experimental design ; Flasks ; Haemophilus influenzae ; Haemophilus influenzae type b (Hib) ; Industrial production ; Ketoglutaric acid ; Meningitis ; Metabolic flux ; metabolic flux analysis ; Metabolism ; Peptones ; Phenylalanine ; Phosphates ; polyribosyl‐ribitol‐phosphate (PRP) ; Vaccines ; Virulence ; Virulence factors ; Yeast</subject><ispartof>Biotechnology progress, 2017-11, Vol.33 (6), p.1508-1519</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2017 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3906-d2e9a65ab69704224abf71860ce0b7284e211bba09577de3659774ce70614ffd3</citedby><cites>FETCH-LOGICAL-c3906-d2e9a65ab69704224abf71860ce0b7284e211bba09577de3659774ce70614ffd3</cites><orcidid>0000-0001-6520-6550 ; 0000-0001-8203-6960 ; 0000-0003-3921-8798 ; 0000-0002-2882-9588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2546$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2546$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28840658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>da Silva, Mateus Ribeiro</creatorcontrib><creatorcontrib>Andreia Freixo Portela, Carla</creatorcontrib><creatorcontrib>Maria Ferreira Albani, Silvia</creatorcontrib><creatorcontrib>Rizzo de Paiva, Paola</creatorcontrib><creatorcontrib>Massako Tanizaki, Martha</creatorcontrib><creatorcontrib>Zangirolami, Teresa Cristina</creatorcontrib><title>Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Haemophilus influenzae type b (Hib), a Gram‐negative capsulated bacterium, is a causative agent of meningitis worldwide. The capsular polysaccharide, a high molecular mass polymer consisting of the repeated units of the polyribosyl‐ribitol‐phosphate, is considered the main virulence factor and it is used as an antigen to vaccines, conjugated to a carrier protein. The industrial production of the polysaccharide requires the cultivation of Hib in rich medium, which impacts process costs and product recovery. In this study, a central composite rotational experimental design strategy was used to access the influence of key components of culture medium (soy peptone, yeast extract and glucose) on biomass formation and polysaccharide production in shake‐flasks. The optimized medium formulation, containing half of the usual yeast extract and soytone concentrations, was further validated in batch bioreactor cultivations. High polysaccharide production (∼500 mg/L) was obtained in a cheaper and more competitive production process for use in Hib vaccine production. In addition, simulations of a metabolic model describing Hib central metabolism were used to assess the role of key amino acids on growth. A chemically defined medium supplemented only with amino acids from α‐ketoglutarate and oxaloacetate families as well as phenylalanine was suggested as a promising alternative for reduced acetate accumulation and enhanced polysaccharide production in Hib cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1508–1519, 2017</description><subject>Acetic acid</subject><subject>Amino acids</subject><subject>Bioreactors</subject><subject>capsular polysaccharide</subject><subject>central composite rotational design (CCRD)</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Cultivation</subject><subject>Experimental design</subject><subject>Flasks</subject><subject>Haemophilus influenzae</subject><subject>Haemophilus influenzae type b (Hib)</subject><subject>Industrial production</subject><subject>Ketoglutaric acid</subject><subject>Meningitis</subject><subject>Metabolic flux</subject><subject>metabolic flux analysis</subject><subject>Metabolism</subject><subject>Peptones</subject><subject>Phenylalanine</subject><subject>Phosphates</subject><subject>polyribosyl‐ribitol‐phosphate (PRP)</subject><subject>Vaccines</subject><subject>Virulence</subject><subject>Virulence factors</subject><subject>Yeast</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kV9L3jAUh8PYmO-cF_sCI7Cb7aKapG3-XG7iVBCUodclaU81kjZdkk7rrV_c1Fd3MdhNDoSH53B-P4Q-UbJPCWEHJk1hn9UVf4M2tGak4KQs36KNFDUvhCrlDvoQ4y0hRBLO3qMdJmVFeC036PHofoJgBxiTdriDaK9HrMcOD5C08c62uHfzff7Sbok24uS9W1_sp2QH-wDYjt0cU7DauQUHcPBHjwmfaBj8dGPdHDORHTA-aMBpmQAbfB38XbrJSzo7Dx_Ru167CHsvcxdd_Ty6PDwpzs6PTw-_nxVtqQgvOgZK81obrgSpGKu06QWVnLRAjGCyAkapMZqoWogOSl4rIaoWBOG06vuu3EVft94p-N8zxNQMNrbgnB7Bz7GhqswWqgTN6Jd_0Fs_h5zBSuUQpVA1y9S3LdUGH2OAvplylDosDSXN2kyzNtOszWT284txNvnsv-RrFRk42AJ31sHyf1Pz4_Li17PyCe3kmvQ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>da Silva, Mateus Ribeiro</creator><creator>Andreia Freixo Portela, Carla</creator><creator>Maria Ferreira Albani, Silvia</creator><creator>Rizzo de Paiva, Paola</creator><creator>Massako Tanizaki, Martha</creator><creator>Zangirolami, Teresa Cristina</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6520-6550</orcidid><orcidid>https://orcid.org/0000-0001-8203-6960</orcidid><orcidid>https://orcid.org/0000-0003-3921-8798</orcidid><orcidid>https://orcid.org/0000-0002-2882-9588</orcidid></search><sort><creationdate>201711</creationdate><title>Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium</title><author>da Silva, Mateus Ribeiro ; Andreia Freixo Portela, Carla ; Maria Ferreira Albani, Silvia ; Rizzo de Paiva, Paola ; Massako Tanizaki, Martha ; Zangirolami, Teresa Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3906-d2e9a65ab69704224abf71860ce0b7284e211bba09577de3659774ce70614ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Amino acids</topic><topic>Bioreactors</topic><topic>capsular polysaccharide</topic><topic>central composite rotational design (CCRD)</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Cultivation</topic><topic>Experimental design</topic><topic>Flasks</topic><topic>Haemophilus influenzae</topic><topic>Haemophilus influenzae type b (Hib)</topic><topic>Industrial production</topic><topic>Ketoglutaric acid</topic><topic>Meningitis</topic><topic>Metabolic flux</topic><topic>metabolic flux analysis</topic><topic>Metabolism</topic><topic>Peptones</topic><topic>Phenylalanine</topic><topic>Phosphates</topic><topic>polyribosyl‐ribitol‐phosphate (PRP)</topic><topic>Vaccines</topic><topic>Virulence</topic><topic>Virulence factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Mateus Ribeiro</creatorcontrib><creatorcontrib>Andreia Freixo Portela, Carla</creatorcontrib><creatorcontrib>Maria Ferreira Albani, Silvia</creatorcontrib><creatorcontrib>Rizzo de Paiva, Paola</creatorcontrib><creatorcontrib>Massako Tanizaki, Martha</creatorcontrib><creatorcontrib>Zangirolami, Teresa Cristina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Mateus Ribeiro</au><au>Andreia Freixo Portela, Carla</au><au>Maria Ferreira Albani, Silvia</au><au>Rizzo de Paiva, Paola</au><au>Massako Tanizaki, Martha</au><au>Zangirolami, Teresa Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2017-11</date><risdate>2017</risdate><volume>33</volume><issue>6</issue><spage>1508</spage><epage>1519</epage><pages>1508-1519</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Haemophilus influenzae type b (Hib), a Gram‐negative capsulated bacterium, is a causative agent of meningitis worldwide. The capsular polysaccharide, a high molecular mass polymer consisting of the repeated units of the polyribosyl‐ribitol‐phosphate, is considered the main virulence factor and it is used as an antigen to vaccines, conjugated to a carrier protein. The industrial production of the polysaccharide requires the cultivation of Hib in rich medium, which impacts process costs and product recovery. In this study, a central composite rotational experimental design strategy was used to access the influence of key components of culture medium (soy peptone, yeast extract and glucose) on biomass formation and polysaccharide production in shake‐flasks. The optimized medium formulation, containing half of the usual yeast extract and soytone concentrations, was further validated in batch bioreactor cultivations. High polysaccharide production (∼500 mg/L) was obtained in a cheaper and more competitive production process for use in Hib vaccine production. In addition, simulations of a metabolic model describing Hib central metabolism were used to assess the role of key amino acids on growth. A chemically defined medium supplemented only with amino acids from α‐ketoglutarate and oxaloacetate families as well as phenylalanine was suggested as a promising alternative for reduced acetate accumulation and enhanced polysaccharide production in Hib cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1508–1519, 2017</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28840658</pmid><doi>10.1002/btpr.2546</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6520-6550</orcidid><orcidid>https://orcid.org/0000-0001-8203-6960</orcidid><orcidid>https://orcid.org/0000-0003-3921-8798</orcidid><orcidid>https://orcid.org/0000-0002-2882-9588</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2017-11, Vol.33 (6), p.1508-1519
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_1932841971
source Wiley Online Library Journals Frontfile Complete
subjects Acetic acid
Amino acids
Bioreactors
capsular polysaccharide
central composite rotational design (CCRD)
Composite materials
Computer simulation
Cultivation
Experimental design
Flasks
Haemophilus influenzae
Haemophilus influenzae type b (Hib)
Industrial production
Ketoglutaric acid
Meningitis
Metabolic flux
metabolic flux analysis
Metabolism
Peptones
Phenylalanine
Phosphates
polyribosyl‐ribitol‐phosphate (PRP)
Vaccines
Virulence
Virulence factors
Yeast
title Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20design%20and%20metabolic%20flux%20analysis%20tools%20to%20optimize%20industrially%20relevant%20Haemophilus%20influenzae%20type%20b%20growth%20medium&rft.jtitle=Biotechnology%20progress&rft.au=da%20Silva,%20Mateus%20Ribeiro&rft.date=2017-11&rft.volume=33&rft.issue=6&rft.spage=1508&rft.epage=1519&rft.pages=1508-1519&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2546&rft_dat=%3Cproquest_cross%3E1980687952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980687952&rft_id=info:pmid/28840658&rfr_iscdi=true