Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter
The hydroxyl radical (OH·) plays an important role in the environmental chemistry and biogeochemistry of surface waters. OH· acts as a strong oxidant within the irradiated water column, and affects the bioavailability, cycling, and mineralization of dissolved organic matter (DOM), the speciation and...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2006-03, Vol.78 (1), p.51-66 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Biogeochemistry |
container_volume | 78 |
creator | Grannas, Amanda M. Martin, Christopher B. Chin, Yu-Ping Platz, Matthew |
description | The hydroxyl radical (OH·) plays an important role in the environmental chemistry and biogeochemistry of surface waters. OH· acts as a strong oxidant within the irradiated water column, and affects the bioavailability, cycling, and mineralization of dissolved organic matter (DOM), the speciation and redox state of important trace metals e.g., iron and copper, and the fate of persistent organic pollutants (POPs). The generation of this species from irradiated DOM may be especially important in Arctic surface waters during the boreal summer, which contains high levels of DOM and experiences continual solar irradiance. Here, we investigate the OH· produced from laser irradiated Arctic DOM isolated from Toolik Lake, AK (68°38′ N, 149°43′ W). We measured the wavelength dependence of OH· production for aqueous solutions of DOM and report that the greatest OH· production occurs at wavelengths less than 360 nm. OH· production rates ranged from 1.7 (±0.1)×10⁻⁷ M h⁻¹ to 6.4 (±0.2)×10⁻⁷ M h⁻¹, with the rate depending on both irradiation wavelength and to a lesser degree the method used to isolate the DOM matrix. These findings lead to a better understanding of the potentially important photo-oxidation processes that may impact DOM cycling in the Arctic. |
doi_str_mv | 10.1007/s10533-005-2342-4 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19325362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20519800</jstor_id><sourcerecordid>20519800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8a9a6b1e74c720070417b7e9e6bc3883827379abef9cdbb95a861eec76513bad3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKc_wAuhCHpXzUmaJrkc82PiZCIK3oU0TaWja2bSivv3ZnQoeHXgPc97ODwInQK-Aoz5dQDMKE0xZimhGUmzPTQCxmnKgL3voxGGXKSE5fQQHYWwxBhLjukIPc42pXffmyZ50WVtdJM8e1f2pqtdm1TerZIH7-NGd7ZMJj7mJrmpQ3DNVwwW_kO3MXnSXWf9MTqodBPsyW6O0dvd7et0ls4X9w_TyTw1GYEuFVrqvADLM8NJ_B1nwAtupc0LQ4WggnDKpS5sJU1ZFJJpkYO1hucMaKFLOkaXw921d5-9DZ1a1cHYptGtdX1QIClhNCcRPP8HLl3v2_ib4lkUkHFOIwQDZLwLwdtKrX290n6jAKutWzW4VdGt2rpVWexc7A7rEJ1VXremDn9FzqUQAJE7G7hl6Jz_3RPMQAqM6Q_7A4Jn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>740974773</pqid></control><display><type>article</type><title>Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter</title><source>Springer journals</source><source>JSTOR</source><creator>Grannas, Amanda M. ; Martin, Christopher B. ; Chin, Yu-Ping ; Platz, Matthew</creator><creatorcontrib>Grannas, Amanda M. ; Martin, Christopher B. ; Chin, Yu-Ping ; Platz, Matthew</creatorcontrib><description>The hydroxyl radical (OH·) plays an important role in the environmental chemistry and biogeochemistry of surface waters. OH· acts as a strong oxidant within the irradiated water column, and affects the bioavailability, cycling, and mineralization of dissolved organic matter (DOM), the speciation and redox state of important trace metals e.g., iron and copper, and the fate of persistent organic pollutants (POPs). The generation of this species from irradiated DOM may be especially important in Arctic surface waters during the boreal summer, which contains high levels of DOM and experiences continual solar irradiance. Here, we investigate the OH· produced from laser irradiated Arctic DOM isolated from Toolik Lake, AK (68°38′ N, 149°43′ W). We measured the wavelength dependence of OH· production for aqueous solutions of DOM and report that the greatest OH· production occurs at wavelengths less than 360 nm. OH· production rates ranged from 1.7 (±0.1)×10⁻⁷ M h⁻¹ to 6.4 (±0.2)×10⁻⁷ M h⁻¹, with the rate depending on both irradiation wavelength and to a lesser degree the method used to isolate the DOM matrix. These findings lead to a better understanding of the potentially important photo-oxidation processes that may impact DOM cycling in the Arctic.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-005-2342-4</identifier><identifier>CODEN: BIOGEP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Aqueous solutions ; Bioavailability ; Biogeochemistry ; Biological and medical sciences ; Dissolved organic matter ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental chemistry ; Exact sciences and technology ; Fluorescence ; Fresh water ecosystems ; Fundamental and applied biological sciences. Psychology ; Hydrology ; Hydrology. Hydrogeology ; Hydroxyl radicals ; Irradiation ; Lasers ; Mineralization ; Natural hazards: prediction, damages, etc ; Oceans ; Oxidizing agents ; Persistent organic pollutants ; Photooxidation ; Speciation ; Sunlight ; Surface water ; Synecology ; Trace metals ; Ultrafiltration ; Water column ; Wavelengths</subject><ispartof>Biogeochemistry, 2006-03, Vol.78 (1), p.51-66</ispartof><rights>Copyright 2006 Springer</rights><rights>2006 INIST-CNRS</rights><rights>Springer 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8a9a6b1e74c720070417b7e9e6bc3883827379abef9cdbb95a861eec76513bad3</citedby><cites>FETCH-LOGICAL-c421t-8a9a6b1e74c720070417b7e9e6bc3883827379abef9cdbb95a861eec76513bad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20519800$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20519800$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17798811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grannas, Amanda M.</creatorcontrib><creatorcontrib>Martin, Christopher B.</creatorcontrib><creatorcontrib>Chin, Yu-Ping</creatorcontrib><creatorcontrib>Platz, Matthew</creatorcontrib><title>Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter</title><title>Biogeochemistry</title><description>The hydroxyl radical (OH·) plays an important role in the environmental chemistry and biogeochemistry of surface waters. OH· acts as a strong oxidant within the irradiated water column, and affects the bioavailability, cycling, and mineralization of dissolved organic matter (DOM), the speciation and redox state of important trace metals e.g., iron and copper, and the fate of persistent organic pollutants (POPs). The generation of this species from irradiated DOM may be especially important in Arctic surface waters during the boreal summer, which contains high levels of DOM and experiences continual solar irradiance. Here, we investigate the OH· produced from laser irradiated Arctic DOM isolated from Toolik Lake, AK (68°38′ N, 149°43′ W). We measured the wavelength dependence of OH· production for aqueous solutions of DOM and report that the greatest OH· production occurs at wavelengths less than 360 nm. OH· production rates ranged from 1.7 (±0.1)×10⁻⁷ M h⁻¹ to 6.4 (±0.2)×10⁻⁷ M h⁻¹, with the rate depending on both irradiation wavelength and to a lesser degree the method used to isolate the DOM matrix. These findings lead to a better understanding of the potentially important photo-oxidation processes that may impact DOM cycling in the Arctic.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Aqueous solutions</subject><subject>Bioavailability</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Dissolved organic matter</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental chemistry</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fresh water ecosystems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydroxyl radicals</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Mineralization</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Oceans</subject><subject>Oxidizing agents</subject><subject>Persistent organic pollutants</subject><subject>Photooxidation</subject><subject>Speciation</subject><subject>Sunlight</subject><subject>Surface water</subject><subject>Synecology</subject><subject>Trace metals</subject><subject>Ultrafiltration</subject><subject>Water column</subject><subject>Wavelengths</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkF1LwzAUhoMoOKc_wAuhCHpXzUmaJrkc82PiZCIK3oU0TaWja2bSivv3ZnQoeHXgPc97ODwInQK-Aoz5dQDMKE0xZimhGUmzPTQCxmnKgL3voxGGXKSE5fQQHYWwxBhLjukIPc42pXffmyZ50WVtdJM8e1f2pqtdm1TerZIH7-NGd7ZMJj7mJrmpQ3DNVwwW_kO3MXnSXWf9MTqodBPsyW6O0dvd7et0ls4X9w_TyTw1GYEuFVrqvADLM8NJ_B1nwAtupc0LQ4WggnDKpS5sJU1ZFJJpkYO1hucMaKFLOkaXw921d5-9DZ1a1cHYptGtdX1QIClhNCcRPP8HLl3v2_ib4lkUkHFOIwQDZLwLwdtKrX290n6jAKutWzW4VdGt2rpVWexc7A7rEJ1VXremDn9FzqUQAJE7G7hl6Jz_3RPMQAqM6Q_7A4Jn</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Grannas, Amanda M.</creator><creator>Martin, Christopher B.</creator><creator>Chin, Yu-Ping</creator><creator>Platz, Matthew</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>H95</scope></search><sort><creationdate>20060301</creationdate><title>Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter</title><author>Grannas, Amanda M. ; Martin, Christopher B. ; Chin, Yu-Ping ; Platz, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8a9a6b1e74c720070417b7e9e6bc3883827379abef9cdbb95a861eec76513bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Aqueous solutions</topic><topic>Bioavailability</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Dissolved organic matter</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental chemistry</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fresh water ecosystems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydroxyl radicals</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Mineralization</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Oceans</topic><topic>Oxidizing agents</topic><topic>Persistent organic pollutants</topic><topic>Photooxidation</topic><topic>Speciation</topic><topic>Sunlight</topic><topic>Surface water</topic><topic>Synecology</topic><topic>Trace metals</topic><topic>Ultrafiltration</topic><topic>Water column</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grannas, Amanda M.</creatorcontrib><creatorcontrib>Martin, Christopher B.</creatorcontrib><creatorcontrib>Chin, Yu-Ping</creatorcontrib><creatorcontrib>Platz, Matthew</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grannas, Amanda M.</au><au>Martin, Christopher B.</au><au>Chin, Yu-Ping</au><au>Platz, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter</atitle><jtitle>Biogeochemistry</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>78</volume><issue>1</issue><spage>51</spage><epage>66</epage><pages>51-66</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><coden>BIOGEP</coden><abstract>The hydroxyl radical (OH·) plays an important role in the environmental chemistry and biogeochemistry of surface waters. OH· acts as a strong oxidant within the irradiated water column, and affects the bioavailability, cycling, and mineralization of dissolved organic matter (DOM), the speciation and redox state of important trace metals e.g., iron and copper, and the fate of persistent organic pollutants (POPs). The generation of this species from irradiated DOM may be especially important in Arctic surface waters during the boreal summer, which contains high levels of DOM and experiences continual solar irradiance. Here, we investigate the OH· produced from laser irradiated Arctic DOM isolated from Toolik Lake, AK (68°38′ N, 149°43′ W). We measured the wavelength dependence of OH· production for aqueous solutions of DOM and report that the greatest OH· production occurs at wavelengths less than 360 nm. OH· production rates ranged from 1.7 (±0.1)×10⁻⁷ M h⁻¹ to 6.4 (±0.2)×10⁻⁷ M h⁻¹, with the rate depending on both irradiation wavelength and to a lesser degree the method used to isolate the DOM matrix. These findings lead to a better understanding of the potentially important photo-oxidation processes that may impact DOM cycling in the Arctic.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10533-005-2342-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2006-03, Vol.78 (1), p.51-66 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_miscellaneous_19325362 |
source | Springer journals; JSTOR |
subjects | Animal and plant ecology Animal, plant and microbial ecology Aqueous solutions Bioavailability Biogeochemistry Biological and medical sciences Dissolved organic matter Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental chemistry Exact sciences and technology Fluorescence Fresh water ecosystems Fundamental and applied biological sciences. Psychology Hydrology Hydrology. Hydrogeology Hydroxyl radicals Irradiation Lasers Mineralization Natural hazards: prediction, damages, etc Oceans Oxidizing agents Persistent organic pollutants Photooxidation Speciation Sunlight Surface water Synecology Trace metals Ultrafiltration Water column Wavelengths |
title | Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyl%20Radical%20Production%20from%20Irradiated%20Arctic%20Dissolved%20Organic%20Matter&rft.jtitle=Biogeochemistry&rft.au=Grannas,%20Amanda%20M.&rft.date=2006-03-01&rft.volume=78&rft.issue=1&rft.spage=51&rft.epage=66&rft.pages=51-66&rft.issn=0168-2563&rft.eissn=1573-515X&rft.coden=BIOGEP&rft_id=info:doi/10.1007/s10533-005-2342-4&rft_dat=%3Cjstor_proqu%3E20519800%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=740974773&rft_id=info:pmid/&rft_jstor_id=20519800&rfr_iscdi=true |