Investigating successive Australian barley breeding populations for stable resistance to leaf rust

Key message Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei ) was e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2017-11, Vol.130 (11), p.2463-2477
Hauptverfasser: Ziems, L. A., Franckowiak, J. D., Platz, G. J., Mace, E. S., Park, R. F., Singh, D., Jordan, D. R., Hickey, L. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2477
container_issue 11
container_start_page 2463
container_title Theoretical and applied genetics
container_volume 130
creator Ziems, L. A.
Franckowiak, J. D.
Platz, G. J.
Mace, E. S.
Park, R. F.
Singh, D.
Jordan, D. R.
Hickey, L. T.
description Key message Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei ) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20 . RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.
doi_str_mv 10.1007/s00122-017-2970-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932168785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A509638395</galeid><sourcerecordid>A509638395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</originalsourceid><addsrcrecordid>eNp1kc1rFTEUxYMo9rX6B7iRgBs3ozdfM5nlo_hRKLjRdcgkN48peckzmSn0vzfDq0WErhLI75x7cw4h7xh8YgDD5wrAOO-ADR0fB-jGF2THpOAd55K_JDsACZ0aFL8gl7XeAQBXIF6TC6616BmTOzLdpHusy3ywy5wOtK7OYa3zPdL9Wpdi42wTnWyJ-ECngug36pRPa2yCnCoNudC62CkiLVjndk0O6ZJpRBtoaSZvyKtgY8W3j-cV-fX1y8_r793tj2831_vbzkmApVMAWnvbT0Fy5jkyiyI464WWTiuPgk8ClGR88t5z7cKotWI9Ci3AjjKIK_Lx7Hsq-ffaPmWOc3UYo02Y12rYKDjr9aBVQz_8h97ltaS2XaNUy7RXLagn6mAjmjmF3AJxm6nZKxj7NnncvNiZciXXWjCYU5mPtjwYBmaryZxrMq0ms9VkxqZ5_zh_nY7onxR_e2kAPwO1PaUDln8WfNb1D6N5nNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951226550</pqid></control><display><type>article</type><title>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ziems, L. A. ; Franckowiak, J. D. ; Platz, G. J. ; Mace, E. S. ; Park, R. F. ; Singh, D. ; Jordan, D. R. ; Hickey, L. T.</creator><creatorcontrib>Ziems, L. A. ; Franckowiak, J. D. ; Platz, G. J. ; Mace, E. S. ; Park, R. F. ; Singh, D. ; Jordan, D. R. ; Hickey, L. T.</creatorcontrib><description>Key message Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei ) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20 . RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-2970-9</identifier><identifier>PMID: 28836114</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Australia ; Barley ; Basidiomycota ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding ; Chromosome Mapping ; Disease resistance (Plants) ; Disease Resistance - genetics ; Diseases and pests ; Environment ; Genes ; Genes, Plant ; Genetic aspects ; Genetic Association Studies ; Genetic Markers ; Genome-wide association studies ; Genomes ; Genotyping ; Genotyping Techniques ; Growth ; Health aspects ; Hordeum - genetics ; Hordeum - microbiology ; Information processing ; Investigations ; Leaf rust ; Leaves ; Life Sciences ; Linkage Disequilibrium ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant resistance ; Quantitative Trait Loci ; Rusts (Fungi) ; Seedlings</subject><ispartof>Theoretical and applied genetics, 2017-11, Vol.130 (11), p.2463-2477</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</citedby><cites>FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-2970-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-2970-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28836114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziems, L. A.</creatorcontrib><creatorcontrib>Franckowiak, J. D.</creatorcontrib><creatorcontrib>Platz, G. J.</creatorcontrib><creatorcontrib>Mace, E. S.</creatorcontrib><creatorcontrib>Park, R. F.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Jordan, D. R.</creatorcontrib><creatorcontrib>Hickey, L. T.</creatorcontrib><title>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei ) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20 . RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.</description><subject>Agriculture</subject><subject>Australia</subject><subject>Barley</subject><subject>Basidiomycota</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Chromosome Mapping</subject><subject>Disease resistance (Plants)</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Environment</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genetic Markers</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Genotyping Techniques</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Hordeum - genetics</subject><subject>Hordeum - microbiology</subject><subject>Information processing</subject><subject>Investigations</subject><subject>Leaf rust</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant resistance</subject><subject>Quantitative Trait Loci</subject><subject>Rusts (Fungi)</subject><subject>Seedlings</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1rFTEUxYMo9rX6B7iRgBs3ozdfM5nlo_hRKLjRdcgkN48peckzmSn0vzfDq0WErhLI75x7cw4h7xh8YgDD5wrAOO-ADR0fB-jGF2THpOAd55K_JDsACZ0aFL8gl7XeAQBXIF6TC6616BmTOzLdpHusy3ywy5wOtK7OYa3zPdL9Wpdi42wTnWyJ-ECngug36pRPa2yCnCoNudC62CkiLVjndk0O6ZJpRBtoaSZvyKtgY8W3j-cV-fX1y8_r793tj2831_vbzkmApVMAWnvbT0Fy5jkyiyI464WWTiuPgk8ClGR88t5z7cKotWI9Ci3AjjKIK_Lx7Hsq-ffaPmWOc3UYo02Y12rYKDjr9aBVQz_8h97ltaS2XaNUy7RXLagn6mAjmjmF3AJxm6nZKxj7NnncvNiZciXXWjCYU5mPtjwYBmaryZxrMq0ms9VkxqZ5_zh_nY7onxR_e2kAPwO1PaUDln8WfNb1D6N5nNo</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ziems, L. A.</creator><creator>Franckowiak, J. D.</creator><creator>Platz, G. J.</creator><creator>Mace, E. S.</creator><creator>Park, R. F.</creator><creator>Singh, D.</creator><creator>Jordan, D. R.</creator><creator>Hickey, L. T.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</title><author>Ziems, L. A. ; Franckowiak, J. D. ; Platz, G. J. ; Mace, E. S. ; Park, R. F. ; Singh, D. ; Jordan, D. R. ; Hickey, L. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Australia</topic><topic>Barley</topic><topic>Basidiomycota</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Chromosome Mapping</topic><topic>Disease resistance (Plants)</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Environment</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genetic Markers</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Genotyping Techniques</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Hordeum - genetics</topic><topic>Hordeum - microbiology</topic><topic>Information processing</topic><topic>Investigations</topic><topic>Leaf rust</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant resistance</topic><topic>Quantitative Trait Loci</topic><topic>Rusts (Fungi)</topic><topic>Seedlings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziems, L. A.</creatorcontrib><creatorcontrib>Franckowiak, J. D.</creatorcontrib><creatorcontrib>Platz, G. J.</creatorcontrib><creatorcontrib>Mace, E. S.</creatorcontrib><creatorcontrib>Park, R. F.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Jordan, D. R.</creatorcontrib><creatorcontrib>Hickey, L. T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziems, L. A.</au><au>Franckowiak, J. D.</au><au>Platz, G. J.</au><au>Mace, E. S.</au><au>Park, R. F.</au><au>Singh, D.</au><au>Jordan, D. R.</au><au>Hickey, L. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>130</volume><issue>11</issue><spage>2463</spage><epage>2477</epage><pages>2463-2477</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei ) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20 . RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28836114</pmid><doi>10.1007/s00122-017-2970-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2017-11, Vol.130 (11), p.2463-2477
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_1932168785
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Australia
Barley
Basidiomycota
Biochemistry
Biomedical and Life Sciences
Biotechnology
Breeding
Chromosome Mapping
Disease resistance (Plants)
Disease Resistance - genetics
Diseases and pests
Environment
Genes
Genes, Plant
Genetic aspects
Genetic Association Studies
Genetic Markers
Genome-wide association studies
Genomes
Genotyping
Genotyping Techniques
Growth
Health aspects
Hordeum - genetics
Hordeum - microbiology
Information processing
Investigations
Leaf rust
Leaves
Life Sciences
Linkage Disequilibrium
Original Article
Phenotype
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
Plant resistance
Quantitative Trait Loci
Rusts (Fungi)
Seedlings
title Investigating successive Australian barley breeding populations for stable resistance to leaf rust
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20successive%20Australian%20barley%20breeding%20populations%20for%20stable%20resistance%20to%20leaf%20rust&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Ziems,%20L.%20A.&rft.date=2017-11-01&rft.volume=130&rft.issue=11&rft.spage=2463&rft.epage=2477&rft.pages=2463-2477&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-2970-9&rft_dat=%3Cgale_proqu%3EA509638395%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951226550&rft_id=info:pmid/28836114&rft_galeid=A509638395&rfr_iscdi=true