Investigating successive Australian barley breeding populations for stable resistance to leaf rust
Key message Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei ) was e...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2017-11, Vol.130 (11), p.2463-2477 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2477 |
---|---|
container_issue | 11 |
container_start_page | 2463 |
container_title | Theoretical and applied genetics |
container_volume | 130 |
creator | Ziems, L. A. Franckowiak, J. D. Platz, G. J. Mace, E. S. Park, R. F. Singh, D. Jordan, D. R. Hickey, L. T. |
description | Key message
Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene
Rph20
to provide stable leaf rust resistance across environments.
Stable resistance to barley leaf rust (BLR, caused by
Puccinia hordei
) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with
Rph20
to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene
Rph20
was the only active resistance region consistently detected across BPs. Of the QTL identified,
RphQ27
on chromosome 6HL was considered the best candidate for pairing with
Rph20
.
RphQ27
did not align or share proximity with known genes and was detected in three of the four BPs. The combination of
RphQ27
and
Rph20
was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene
RphQ27
can interact additively with
Rph20
to provide stable resistance to BLR across diverse environments. |
doi_str_mv | 10.1007/s00122-017-2970-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932168785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A509638395</galeid><sourcerecordid>A509638395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</originalsourceid><addsrcrecordid>eNp1kc1rFTEUxYMo9rX6B7iRgBs3ozdfM5nlo_hRKLjRdcgkN48peckzmSn0vzfDq0WErhLI75x7cw4h7xh8YgDD5wrAOO-ADR0fB-jGF2THpOAd55K_JDsACZ0aFL8gl7XeAQBXIF6TC6616BmTOzLdpHusy3ywy5wOtK7OYa3zPdL9Wpdi42wTnWyJ-ECngug36pRPa2yCnCoNudC62CkiLVjndk0O6ZJpRBtoaSZvyKtgY8W3j-cV-fX1y8_r793tj2831_vbzkmApVMAWnvbT0Fy5jkyiyI464WWTiuPgk8ClGR88t5z7cKotWI9Ci3AjjKIK_Lx7Hsq-ffaPmWOc3UYo02Y12rYKDjr9aBVQz_8h97ltaS2XaNUy7RXLagn6mAjmjmF3AJxm6nZKxj7NnncvNiZciXXWjCYU5mPtjwYBmaryZxrMq0ms9VkxqZ5_zh_nY7onxR_e2kAPwO1PaUDln8WfNb1D6N5nNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951226550</pqid></control><display><type>article</type><title>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ziems, L. A. ; Franckowiak, J. D. ; Platz, G. J. ; Mace, E. S. ; Park, R. F. ; Singh, D. ; Jordan, D. R. ; Hickey, L. T.</creator><creatorcontrib>Ziems, L. A. ; Franckowiak, J. D. ; Platz, G. J. ; Mace, E. S. ; Park, R. F. ; Singh, D. ; Jordan, D. R. ; Hickey, L. T.</creatorcontrib><description>Key message
Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene
Rph20
to provide stable leaf rust resistance across environments.
Stable resistance to barley leaf rust (BLR, caused by
Puccinia hordei
) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with
Rph20
to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene
Rph20
was the only active resistance region consistently detected across BPs. Of the QTL identified,
RphQ27
on chromosome 6HL was considered the best candidate for pairing with
Rph20
.
RphQ27
did not align or share proximity with known genes and was detected in three of the four BPs. The combination of
RphQ27
and
Rph20
was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene
RphQ27
can interact additively with
Rph20
to provide stable resistance to BLR across diverse environments.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-2970-9</identifier><identifier>PMID: 28836114</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Australia ; Barley ; Basidiomycota ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding ; Chromosome Mapping ; Disease resistance (Plants) ; Disease Resistance - genetics ; Diseases and pests ; Environment ; Genes ; Genes, Plant ; Genetic aspects ; Genetic Association Studies ; Genetic Markers ; Genome-wide association studies ; Genomes ; Genotyping ; Genotyping Techniques ; Growth ; Health aspects ; Hordeum - genetics ; Hordeum - microbiology ; Information processing ; Investigations ; Leaf rust ; Leaves ; Life Sciences ; Linkage Disequilibrium ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant resistance ; Quantitative Trait Loci ; Rusts (Fungi) ; Seedlings</subject><ispartof>Theoretical and applied genetics, 2017-11, Vol.130 (11), p.2463-2477</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</citedby><cites>FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-2970-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-2970-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28836114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziems, L. A.</creatorcontrib><creatorcontrib>Franckowiak, J. D.</creatorcontrib><creatorcontrib>Platz, G. J.</creatorcontrib><creatorcontrib>Mace, E. S.</creatorcontrib><creatorcontrib>Park, R. F.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Jordan, D. R.</creatorcontrib><creatorcontrib>Hickey, L. T.</creatorcontrib><title>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene
Rph20
to provide stable leaf rust resistance across environments.
Stable resistance to barley leaf rust (BLR, caused by
Puccinia hordei
) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with
Rph20
to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene
Rph20
was the only active resistance region consistently detected across BPs. Of the QTL identified,
RphQ27
on chromosome 6HL was considered the best candidate for pairing with
Rph20
.
RphQ27
did not align or share proximity with known genes and was detected in three of the four BPs. The combination of
RphQ27
and
Rph20
was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene
RphQ27
can interact additively with
Rph20
to provide stable resistance to BLR across diverse environments.</description><subject>Agriculture</subject><subject>Australia</subject><subject>Barley</subject><subject>Basidiomycota</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Chromosome Mapping</subject><subject>Disease resistance (Plants)</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Environment</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genetic Markers</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Genotyping Techniques</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Hordeum - genetics</subject><subject>Hordeum - microbiology</subject><subject>Information processing</subject><subject>Investigations</subject><subject>Leaf rust</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant resistance</subject><subject>Quantitative Trait Loci</subject><subject>Rusts (Fungi)</subject><subject>Seedlings</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1rFTEUxYMo9rX6B7iRgBs3ozdfM5nlo_hRKLjRdcgkN48peckzmSn0vzfDq0WErhLI75x7cw4h7xh8YgDD5wrAOO-ADR0fB-jGF2THpOAd55K_JDsACZ0aFL8gl7XeAQBXIF6TC6616BmTOzLdpHusy3ywy5wOtK7OYa3zPdL9Wpdi42wTnWyJ-ECngug36pRPa2yCnCoNudC62CkiLVjndk0O6ZJpRBtoaSZvyKtgY8W3j-cV-fX1y8_r793tj2831_vbzkmApVMAWnvbT0Fy5jkyiyI464WWTiuPgk8ClGR88t5z7cKotWI9Ci3AjjKIK_Lx7Hsq-ffaPmWOc3UYo02Y12rYKDjr9aBVQz_8h97ltaS2XaNUy7RXLagn6mAjmjmF3AJxm6nZKxj7NnncvNiZciXXWjCYU5mPtjwYBmaryZxrMq0ms9VkxqZ5_zh_nY7onxR_e2kAPwO1PaUDln8WfNb1D6N5nNo</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ziems, L. A.</creator><creator>Franckowiak, J. D.</creator><creator>Platz, G. J.</creator><creator>Mace, E. S.</creator><creator>Park, R. F.</creator><creator>Singh, D.</creator><creator>Jordan, D. R.</creator><creator>Hickey, L. T.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</title><author>Ziems, L. A. ; Franckowiak, J. D. ; Platz, G. J. ; Mace, E. S. ; Park, R. F. ; Singh, D. ; Jordan, D. R. ; Hickey, L. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-50088da6bf421d2e1ae3fcad384c85de32b305412bddd28cf988516e3830a94f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Australia</topic><topic>Barley</topic><topic>Basidiomycota</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Chromosome Mapping</topic><topic>Disease resistance (Plants)</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Environment</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genetic Markers</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Genotyping Techniques</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Hordeum - genetics</topic><topic>Hordeum - microbiology</topic><topic>Information processing</topic><topic>Investigations</topic><topic>Leaf rust</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant resistance</topic><topic>Quantitative Trait Loci</topic><topic>Rusts (Fungi)</topic><topic>Seedlings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziems, L. A.</creatorcontrib><creatorcontrib>Franckowiak, J. D.</creatorcontrib><creatorcontrib>Platz, G. J.</creatorcontrib><creatorcontrib>Mace, E. S.</creatorcontrib><creatorcontrib>Park, R. F.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Jordan, D. R.</creatorcontrib><creatorcontrib>Hickey, L. T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziems, L. A.</au><au>Franckowiak, J. D.</au><au>Platz, G. J.</au><au>Mace, E. S.</au><au>Park, R. F.</au><au>Singh, D.</au><au>Jordan, D. R.</au><au>Hickey, L. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating successive Australian barley breeding populations for stable resistance to leaf rust</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>130</volume><issue>11</issue><spage>2463</spage><epage>2477</epage><pages>2463-2477</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene
Rph20
to provide stable leaf rust resistance across environments.
Stable resistance to barley leaf rust (BLR, caused by
Puccinia hordei
) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with
Rph20
to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene
Rph20
was the only active resistance region consistently detected across BPs. Of the QTL identified,
RphQ27
on chromosome 6HL was considered the best candidate for pairing with
Rph20
.
RphQ27
did not align or share proximity with known genes and was detected in three of the four BPs. The combination of
RphQ27
and
Rph20
was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene
RphQ27
can interact additively with
Rph20
to provide stable resistance to BLR across diverse environments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28836114</pmid><doi>10.1007/s00122-017-2970-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2017-11, Vol.130 (11), p.2463-2477 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_1932168785 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agriculture Australia Barley Basidiomycota Biochemistry Biomedical and Life Sciences Biotechnology Breeding Chromosome Mapping Disease resistance (Plants) Disease Resistance - genetics Diseases and pests Environment Genes Genes, Plant Genetic aspects Genetic Association Studies Genetic Markers Genome-wide association studies Genomes Genotyping Genotyping Techniques Growth Health aspects Hordeum - genetics Hordeum - microbiology Information processing Investigations Leaf rust Leaves Life Sciences Linkage Disequilibrium Original Article Phenotype Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Plant resistance Quantitative Trait Loci Rusts (Fungi) Seedlings |
title | Investigating successive Australian barley breeding populations for stable resistance to leaf rust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20successive%20Australian%20barley%20breeding%20populations%20for%20stable%20resistance%20to%20leaf%20rust&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Ziems,%20L.%20A.&rft.date=2017-11-01&rft.volume=130&rft.issue=11&rft.spage=2463&rft.epage=2477&rft.pages=2463-2477&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-2970-9&rft_dat=%3Cgale_proqu%3EA509638395%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951226550&rft_id=info:pmid/28836114&rft_galeid=A509638395&rfr_iscdi=true |