Hierarchical ZnIn2 S4 /MoSe2 Nanoarchitectures for Efficient Noble-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light
A highly efficient visible-light-driven photocatalyst is urgently necessary for photocatalytic hydrogen generation through water splitting. Herein, ZnIn2 S4 hierarchical architectures assembled as ultrathin nanosheets were synthesized by a facile one-pot polyol approach. Subsequently, the two-dimens...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2017-11, Vol.10 (22), p.4624-4631 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A highly efficient visible-light-driven photocatalyst is urgently necessary for photocatalytic hydrogen generation through water splitting. Herein, ZnIn2 S4 hierarchical architectures assembled as ultrathin nanosheets were synthesized by a facile one-pot polyol approach. Subsequently, the two-dimensional-network-like MoSe2 was successfully hybridized with ZnIn2 S4 by taking advantage of their analogous intrinsic layered morphologies. The noble-metal-free ZnIn2 S4 /MoSe2 heterostructures show enhanced photocatalytic H2 evolution compared to pure ZnIn2 S4 . It is noteworthy that the optimum nanocomposite of ZnIn2 S4 /2 % MoSe2 photocatalyst displays a high H2 generation rate of 2228 μmol g-1 h-1 and an apparent quantum yield (AQY) of 21.39 % at 420 nm. This study presents an unprecedented ZnIn2 S4 /MoSe2 metal-sulfide-metal-selenide hybrid system for H2 evolution. Importantly, the present efficient hybridization strategy reveals the potential of hierarchical nanoarchitectures for a multitude of energy storage and solar energy conversion applications. |
---|---|
ISSN: | 1864-564X |
DOI: | 10.1002/cssc.201701345 |