Spatial Capture-Mark-Resight Estimation of Animal Population Density

Sightings of previously marked animals can extend a capture-recapture dataset without the added cost of capturing new animals for marking. Combined marking and resighting methods are therefore an attractive option in animal population studies, and there exist various likelihood-based non-spatial mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2018-06, Vol.74 (2), p.411-420
Hauptverfasser: Efford, Murray G., Hunter, Christine M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 2
container_start_page 411
container_title Biometrics
container_volume 74
creator Efford, Murray G.
Hunter, Christine M.
description Sightings of previously marked animals can extend a capture-recapture dataset without the added cost of capturing new animals for marking. Combined marking and resighting methods are therefore an attractive option in animal population studies, and there exist various likelihood-based non-spatial models, and some spatial versions fitted by Markov chain Monte Carlo sampling. As implemented to date, the focus has been on modeling sightings only, which requires that the spatial distribution of pre-marked animals is known. We develop a suite of likelihood-based spatial mark-resight models that either include the marking phase ("capture-mark-resight" models) or require a known distribution of marked animals (narrow-sense "mark-resight"). The new models sacrifice some information in the covariance structure of the counts of unmarked animals; estimation is by maximizing a pseudolikelihood with a simulation-based adjustment for overdispersion in the sightings of unmarked animals. Simulations suggest that the resulting estimates of population density have low bias and adequate confidence interval coverage under typical sampling conditions. Further work is needed to specify the conditions under which ignoring covariance results in unacceptable loss of precision, or to modify the pseudolikelihood to include that information. The methods are applied to a study of ship rats Rattus rattus using live traps and video cameras in a New Zealand forest, and to previously published data.
doi_str_mv 10.1111/biom.12766
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932166723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45092882</jstor_id><sourcerecordid>45092882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3796-ceaf545a14076803db08c5359b5a03921371b2ab3b1ffb2c48036f2ff69327e3</originalsourceid><addsrcrecordid>eNp9kM1PwjAYhxujEUQv3jVLvBiTYb-3HRHwI4FglIO3phutDsc62y2G_97igIMHe2nevs_7pO8PgHME-8if2zQ3qz7CEecHoIsYRSGkGB6CLoSQh4Sitw44cW7py4RBfAw6OI4JZYR3wei1knUui2Aoq7qxKpxK-xm-KJe_f9TB2NX5yvdNGRgdDEpfFMGzqZqifRyp0uX1-hQcaVk4dba9e2B-P54PH8PJ7OFpOJiEGYkSHmZKakaZRBRGPIZkkcI4Y4QlKZOQJBiRCKVYpiRFWqc4o57hGmvNE4IjRXrgutVW1nw1ytVilbtMFYUslWmcQB5DnEeYePTqD7o0jS395wSGLCExpfGGummpzBrnrNKisn5FuxYIik20YhOt-I3Ww5dbZZOu1GKP7rL0AGqB77xQ639U4u5pNt1JL9qZpauN3c9QBhPvxeQHWm6Lgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059384483</pqid></control><display><type>article</type><title>Spatial Capture-Mark-Resight Estimation of Animal Population Density</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Efford, Murray G. ; Hunter, Christine M.</creator><creatorcontrib>Efford, Murray G. ; Hunter, Christine M.</creatorcontrib><description>Sightings of previously marked animals can extend a capture-recapture dataset without the added cost of capturing new animals for marking. Combined marking and resighting methods are therefore an attractive option in animal population studies, and there exist various likelihood-based non-spatial models, and some spatial versions fitted by Markov chain Monte Carlo sampling. As implemented to date, the focus has been on modeling sightings only, which requires that the spatial distribution of pre-marked animals is known. We develop a suite of likelihood-based spatial mark-resight models that either include the marking phase ("capture-mark-resight" models) or require a known distribution of marked animals (narrow-sense "mark-resight"). The new models sacrifice some information in the covariance structure of the counts of unmarked animals; estimation is by maximizing a pseudolikelihood with a simulation-based adjustment for overdispersion in the sightings of unmarked animals. Simulations suggest that the resulting estimates of population density have low bias and adequate confidence interval coverage under typical sampling conditions. Further work is needed to specify the conditions under which ignoring covariance results in unacceptable loss of precision, or to modify the pseudolikelihood to include that information. The methods are applied to a study of ship rats Rattus rattus using live traps and video cameras in a New Zealand forest, and to previously published data.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12766</identifier><identifier>PMID: 28834536</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Animal Population Groups ; Animal populations ; Animals ; BIOMETRIC METHODOLOGY: DISCUSSION PAPER ; Cameras ; Capture-recapture studies ; Capture–mark–resight model ; Computer simulation ; Confidence intervals ; Covariance ; Datasets as Topic ; Density estimation ; Likelihood Functions ; Marking ; Markov Chains ; Maximum likelihood ; Monte Carlo Method ; New Zealand ; Overdispersion ; Population Density ; Population statistics ; Population studies ; Rats ; Sampling ; Spatial Analysis ; Spatial distribution ; Spatial mark–resight ; Spatially explicit capture–recapture</subject><ispartof>Biometrics, 2018-06, Vol.74 (2), p.411-420</ispartof><rights>Copyright © 2018 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><rights>2018, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3796-ceaf545a14076803db08c5359b5a03921371b2ab3b1ffb2c48036f2ff69327e3</citedby><cites>FETCH-LOGICAL-c3796-ceaf545a14076803db08c5359b5a03921371b2ab3b1ffb2c48036f2ff69327e3</cites><orcidid>0000-0001-5231-5184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45092882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45092882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28834536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Efford, Murray G.</creatorcontrib><creatorcontrib>Hunter, Christine M.</creatorcontrib><title>Spatial Capture-Mark-Resight Estimation of Animal Population Density</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Sightings of previously marked animals can extend a capture-recapture dataset without the added cost of capturing new animals for marking. Combined marking and resighting methods are therefore an attractive option in animal population studies, and there exist various likelihood-based non-spatial models, and some spatial versions fitted by Markov chain Monte Carlo sampling. As implemented to date, the focus has been on modeling sightings only, which requires that the spatial distribution of pre-marked animals is known. We develop a suite of likelihood-based spatial mark-resight models that either include the marking phase ("capture-mark-resight" models) or require a known distribution of marked animals (narrow-sense "mark-resight"). The new models sacrifice some information in the covariance structure of the counts of unmarked animals; estimation is by maximizing a pseudolikelihood with a simulation-based adjustment for overdispersion in the sightings of unmarked animals. Simulations suggest that the resulting estimates of population density have low bias and adequate confidence interval coverage under typical sampling conditions. Further work is needed to specify the conditions under which ignoring covariance results in unacceptable loss of precision, or to modify the pseudolikelihood to include that information. The methods are applied to a study of ship rats Rattus rattus using live traps and video cameras in a New Zealand forest, and to previously published data.</description><subject>Animal Population Groups</subject><subject>Animal populations</subject><subject>Animals</subject><subject>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</subject><subject>Cameras</subject><subject>Capture-recapture studies</subject><subject>Capture–mark–resight model</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Covariance</subject><subject>Datasets as Topic</subject><subject>Density estimation</subject><subject>Likelihood Functions</subject><subject>Marking</subject><subject>Markov Chains</subject><subject>Maximum likelihood</subject><subject>Monte Carlo Method</subject><subject>New Zealand</subject><subject>Overdispersion</subject><subject>Population Density</subject><subject>Population statistics</subject><subject>Population studies</subject><subject>Rats</subject><subject>Sampling</subject><subject>Spatial Analysis</subject><subject>Spatial distribution</subject><subject>Spatial mark–resight</subject><subject>Spatially explicit capture–recapture</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1PwjAYhxujEUQv3jVLvBiTYb-3HRHwI4FglIO3phutDsc62y2G_97igIMHe2nevs_7pO8PgHME-8if2zQ3qz7CEecHoIsYRSGkGB6CLoSQh4Sitw44cW7py4RBfAw6OI4JZYR3wei1knUui2Aoq7qxKpxK-xm-KJe_f9TB2NX5yvdNGRgdDEpfFMGzqZqifRyp0uX1-hQcaVk4dba9e2B-P54PH8PJ7OFpOJiEGYkSHmZKakaZRBRGPIZkkcI4Y4QlKZOQJBiRCKVYpiRFWqc4o57hGmvNE4IjRXrgutVW1nw1ytVilbtMFYUslWmcQB5DnEeYePTqD7o0jS395wSGLCExpfGGummpzBrnrNKisn5FuxYIik20YhOt-I3Ww5dbZZOu1GKP7rL0AGqB77xQ639U4u5pNt1JL9qZpauN3c9QBhPvxeQHWm6Lgg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Efford, Murray G.</creator><creator>Hunter, Christine M.</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5231-5184</orcidid></search><sort><creationdate>20180601</creationdate><title>Spatial Capture-Mark-Resight Estimation of Animal Population Density</title><author>Efford, Murray G. ; Hunter, Christine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3796-ceaf545a14076803db08c5359b5a03921371b2ab3b1ffb2c48036f2ff69327e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal Population Groups</topic><topic>Animal populations</topic><topic>Animals</topic><topic>BIOMETRIC METHODOLOGY: DISCUSSION PAPER</topic><topic>Cameras</topic><topic>Capture-recapture studies</topic><topic>Capture–mark–resight model</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Covariance</topic><topic>Datasets as Topic</topic><topic>Density estimation</topic><topic>Likelihood Functions</topic><topic>Marking</topic><topic>Markov Chains</topic><topic>Maximum likelihood</topic><topic>Monte Carlo Method</topic><topic>New Zealand</topic><topic>Overdispersion</topic><topic>Population Density</topic><topic>Population statistics</topic><topic>Population studies</topic><topic>Rats</topic><topic>Sampling</topic><topic>Spatial Analysis</topic><topic>Spatial distribution</topic><topic>Spatial mark–resight</topic><topic>Spatially explicit capture–recapture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efford, Murray G.</creatorcontrib><creatorcontrib>Hunter, Christine M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efford, Murray G.</au><au>Hunter, Christine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Capture-Mark-Resight Estimation of Animal Population Density</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>74</volume><issue>2</issue><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Sightings of previously marked animals can extend a capture-recapture dataset without the added cost of capturing new animals for marking. Combined marking and resighting methods are therefore an attractive option in animal population studies, and there exist various likelihood-based non-spatial models, and some spatial versions fitted by Markov chain Monte Carlo sampling. As implemented to date, the focus has been on modeling sightings only, which requires that the spatial distribution of pre-marked animals is known. We develop a suite of likelihood-based spatial mark-resight models that either include the marking phase ("capture-mark-resight" models) or require a known distribution of marked animals (narrow-sense "mark-resight"). The new models sacrifice some information in the covariance structure of the counts of unmarked animals; estimation is by maximizing a pseudolikelihood with a simulation-based adjustment for overdispersion in the sightings of unmarked animals. Simulations suggest that the resulting estimates of population density have low bias and adequate confidence interval coverage under typical sampling conditions. Further work is needed to specify the conditions under which ignoring covariance results in unacceptable loss of precision, or to modify the pseudolikelihood to include that information. The methods are applied to a study of ship rats Rattus rattus using live traps and video cameras in a New Zealand forest, and to previously published data.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28834536</pmid><doi>10.1111/biom.12766</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5231-5184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2018-06, Vol.74 (2), p.411-420
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_1932166723
source MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Animal Population Groups
Animal populations
Animals
BIOMETRIC METHODOLOGY: DISCUSSION PAPER
Cameras
Capture-recapture studies
Capture–mark–resight model
Computer simulation
Confidence intervals
Covariance
Datasets as Topic
Density estimation
Likelihood Functions
Marking
Markov Chains
Maximum likelihood
Monte Carlo Method
New Zealand
Overdispersion
Population Density
Population statistics
Population studies
Rats
Sampling
Spatial Analysis
Spatial distribution
Spatial mark–resight
Spatially explicit capture–recapture
title Spatial Capture-Mark-Resight Estimation of Animal Population Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Capture-Mark-Resight%20Estimation%20of%20Animal%20Population%20Density&rft.jtitle=Biometrics&rft.au=Efford,%20Murray%20G.&rft.date=2018-06-01&rft.volume=74&rft.issue=2&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12766&rft_dat=%3Cjstor_proqu%3E45092882%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059384483&rft_id=info:pmid/28834536&rft_jstor_id=45092882&rfr_iscdi=true