Why are some plant-pollinator networks more nested than others?
1. Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and c...
Gespeichert in:
Veröffentlicht in: | The Journal of animal ecology 2017-11, Vol.86 (6), p.1417-1424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1424 |
---|---|
container_issue | 6 |
container_start_page | 1417 |
container_title | The Journal of animal ecology |
container_volume | 86 |
creator | Song, Chuliang Rohr, Rudolf P. Saavedra, Serguei |
description | 1. Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. 2. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. 3. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. 4. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities. |
doi_str_mv | 10.1111/1365-2656.12749 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932166665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45024453</jstor_id><sourcerecordid>45024453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4359-daaee069fcce2cd19183d23cd0b1ba7dad5b5c92e7428cdc2b3d4efaf7cadbc63</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqUwM4EisbCk9SPOY6qqqrxUwQJitBz7Rk1J4mKnqvrvcehjYOEulqzvHB19CF0TPCT-RoTFPKQxj4eEJlF2gvrHn1PUx5iSME0y3EMXzi0xxgnF7Bz1aJoyhlPWR-PPxTaQFgJnaghWlWzacGWqqmxka2zQQLsx9ssFtfFMA64FHbQL2QSmXYB140t0VsjKwdX-HaCPh9n79Cmcvz0-TyfzUEWMZ6GWEgDHWaEUUKVJRlKmKVMa5ySXiZaa51xlFJKIpkormjMdQSGLREmdq5gN0P2ud2XN99rvEHXpFFR-MJi1EyRjlMT-uEfv_qBLs7aNX-cpTllGk6QrHO0oZY1zFgqxsmUt7VYQLDq3ojMpOpPi161P3O5713kN-sgfZHog3gGbsoLtf33iZfI6OzTf7IJL56UfgxHHNIo4Yz8VQo3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952392776</pqid></control><display><type>article</type><title>Why are some plant-pollinator networks more nested than others?</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Song, Chuliang ; Rohr, Rudolf P. ; Saavedra, Serguei</creator><contributor>Eklöf, Anna</contributor><creatorcontrib>Song, Chuliang ; Rohr, Rudolf P. ; Saavedra, Serguei ; Eklöf, Anna</creatorcontrib><description>1. Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. 2. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. 3. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. 4. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities.</description><identifier>ISSN: 0021-8790</identifier><identifier>EISSN: 1365-2656</identifier><identifier>DOI: 10.1111/1365-2656.12749</identifier><identifier>PMID: 28833083</identifier><language>eng</language><publisher>England: John Wiley & Sons Ltd</publisher><subject>Animals ; Biota ; changing environments ; Coexistence ; Community ecology ; Ecology ; Environmental conditions ; Insecta ; Models, Biological ; nestedness ; network comparison ; Networks ; Plants ; Pollination ; Pollinators ; Seasonal variations ; seasonality ; Structural stability ; Studies ; Symbiosis ; Temperature ; z‐scores</subject><ispartof>The Journal of animal ecology, 2017-11, Vol.86 (6), p.1417-1424</ispartof><rights>2017 British Ecological Society</rights><rights>2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society</rights><rights>2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.</rights><rights>Journal of Animal Ecology © 2017 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4359-daaee069fcce2cd19183d23cd0b1ba7dad5b5c92e7428cdc2b3d4efaf7cadbc63</citedby><cites>FETCH-LOGICAL-c4359-daaee069fcce2cd19183d23cd0b1ba7dad5b5c92e7428cdc2b3d4efaf7cadbc63</cites><orcidid>0000-0002-6440-2696 ; 0000-0003-1768-363X ; 0000-0001-7490-8626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45024453$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45024453$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28833083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Eklöf, Anna</contributor><creatorcontrib>Song, Chuliang</creatorcontrib><creatorcontrib>Rohr, Rudolf P.</creatorcontrib><creatorcontrib>Saavedra, Serguei</creatorcontrib><title>Why are some plant-pollinator networks more nested than others?</title><title>The Journal of animal ecology</title><addtitle>J Anim Ecol</addtitle><description>1. Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. 2. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. 3. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. 4. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities.</description><subject>Animals</subject><subject>Biota</subject><subject>changing environments</subject><subject>Coexistence</subject><subject>Community ecology</subject><subject>Ecology</subject><subject>Environmental conditions</subject><subject>Insecta</subject><subject>Models, Biological</subject><subject>nestedness</subject><subject>network comparison</subject><subject>Networks</subject><subject>Plants</subject><subject>Pollination</subject><subject>Pollinators</subject><subject>Seasonal variations</subject><subject>seasonality</subject><subject>Structural stability</subject><subject>Studies</subject><subject>Symbiosis</subject><subject>Temperature</subject><subject>z‐scores</subject><issn>0021-8790</issn><issn>1365-2656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqUwM4EisbCk9SPOY6qqqrxUwQJitBz7Rk1J4mKnqvrvcehjYOEulqzvHB19CF0TPCT-RoTFPKQxj4eEJlF2gvrHn1PUx5iSME0y3EMXzi0xxgnF7Bz1aJoyhlPWR-PPxTaQFgJnaghWlWzacGWqqmxka2zQQLsx9ssFtfFMA64FHbQL2QSmXYB140t0VsjKwdX-HaCPh9n79Cmcvz0-TyfzUEWMZ6GWEgDHWaEUUKVJRlKmKVMa5ySXiZaa51xlFJKIpkormjMdQSGLREmdq5gN0P2ud2XN99rvEHXpFFR-MJi1EyRjlMT-uEfv_qBLs7aNX-cpTllGk6QrHO0oZY1zFgqxsmUt7VYQLDq3ojMpOpPi161P3O5713kN-sgfZHog3gGbsoLtf33iZfI6OzTf7IJL56UfgxHHNIo4Yz8VQo3E</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Song, Chuliang</creator><creator>Rohr, Rudolf P.</creator><creator>Saavedra, Serguei</creator><general>John Wiley & Sons Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6440-2696</orcidid><orcidid>https://orcid.org/0000-0003-1768-363X</orcidid><orcidid>https://orcid.org/0000-0001-7490-8626</orcidid></search><sort><creationdate>201711</creationdate><title>Why are some plant-pollinator networks more nested than others?</title><author>Song, Chuliang ; Rohr, Rudolf P. ; Saavedra, Serguei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4359-daaee069fcce2cd19183d23cd0b1ba7dad5b5c92e7428cdc2b3d4efaf7cadbc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biota</topic><topic>changing environments</topic><topic>Coexistence</topic><topic>Community ecology</topic><topic>Ecology</topic><topic>Environmental conditions</topic><topic>Insecta</topic><topic>Models, Biological</topic><topic>nestedness</topic><topic>network comparison</topic><topic>Networks</topic><topic>Plants</topic><topic>Pollination</topic><topic>Pollinators</topic><topic>Seasonal variations</topic><topic>seasonality</topic><topic>Structural stability</topic><topic>Studies</topic><topic>Symbiosis</topic><topic>Temperature</topic><topic>z‐scores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chuliang</creatorcontrib><creatorcontrib>Rohr, Rudolf P.</creatorcontrib><creatorcontrib>Saavedra, Serguei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of animal ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Chuliang</au><au>Rohr, Rudolf P.</au><au>Saavedra, Serguei</au><au>Eklöf, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why are some plant-pollinator networks more nested than others?</atitle><jtitle>The Journal of animal ecology</jtitle><addtitle>J Anim Ecol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>86</volume><issue>6</issue><spage>1417</spage><epage>1424</epage><pages>1417-1424</pages><issn>0021-8790</issn><eissn>1365-2656</eissn><abstract>1. Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. 2. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. 3. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. 4. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities.</abstract><cop>England</cop><pub>John Wiley & Sons Ltd</pub><pmid>28833083</pmid><doi>10.1111/1365-2656.12749</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6440-2696</orcidid><orcidid>https://orcid.org/0000-0003-1768-363X</orcidid><orcidid>https://orcid.org/0000-0001-7490-8626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8790 |
ispartof | The Journal of animal ecology, 2017-11, Vol.86 (6), p.1417-1424 |
issn | 0021-8790 1365-2656 |
language | eng |
recordid | cdi_proquest_miscellaneous_1932166665 |
source | Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Biota changing environments Coexistence Community ecology Ecology Environmental conditions Insecta Models, Biological nestedness network comparison Networks Plants Pollination Pollinators Seasonal variations seasonality Structural stability Studies Symbiosis Temperature z‐scores |
title | Why are some plant-pollinator networks more nested than others? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20are%20some%20plant-pollinator%20networks%20more%20nested%20than%20others?&rft.jtitle=The%20Journal%20of%20animal%20ecology&rft.au=Song,%20Chuliang&rft.date=2017-11&rft.volume=86&rft.issue=6&rft.spage=1417&rft.epage=1424&rft.pages=1417-1424&rft.issn=0021-8790&rft.eissn=1365-2656&rft_id=info:doi/10.1111/1365-2656.12749&rft_dat=%3Cjstor_proqu%3E45024453%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952392776&rft_id=info:pmid/28833083&rft_jstor_id=45024453&rfr_iscdi=true |