Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position
Introduction Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular electrophysiology 2017-12, Vol.28 (12), p.1492-1499 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1499 |
---|---|
container_issue | 12 |
container_start_page | 1492 |
container_title | Journal of cardiovascular electrophysiology |
container_volume | 28 |
creator | Burkland, David A. Ganapathy, Anand V. John, Mathews Greet, Brian D. Saeed, Mohammad Rasekh, Abdi Razavi, Mehdi |
description | Introduction
Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle.
Methods
An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions.
Results
A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P |
doi_str_mv | 10.1111/jce.13325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932166095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932166095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</originalsourceid><addsrcrecordid>eNp10ctKxDAUBuAgiveFLyABNwpWc2nadCmDV0Q3ui7H5FQz9GbSKrPzEXxGn8SMoy4EAyEhfPlJziFkh7MjHsfx1OARl1KoJbLOVcoSzbN8Oe5ZqhKpc7lGNkKYMsZlxtQqWRNaS5kLtk7CDYL_eHuvHNaWuqZHC61BCsaMHgasZ9S6MLj2cXThCQOFpmsfaY_eGfDWQX1IXTt4MPDiBvCzQwqtjXOIovO0wWjm96GmfRfc4Lp2i6xUUAfc_l43yf3Z6d3kIrm-Pb-cnFwnRiqpklSJnBmlc8RMc4E21YWodMVAV-kDWKWlyJXUmUiLPB6BRZOxIqssB1FZKzfJ_iK3993ziGEoGxcM1jW02I2h5IUUPItXVKR7f-i0G3189FzlKWMyLXRUBwtlfBeCx6rsvWvip0vOynknytiJ8qsT0e5-J44PsQi_8qf0ERwvwKurcfZ_Unk1OV1EfgIbT5Rz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974003498</pqid></control><display><type>article</type><title>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</title><source>MEDLINE</source><source>Wiley-Blackwell Full Collection</source><creator>Burkland, David A. ; Ganapathy, Anand V. ; John, Mathews ; Greet, Brian D. ; Saeed, Mohammad ; Rasekh, Abdi ; Razavi, Mehdi</creator><creatorcontrib>Burkland, David A. ; Ganapathy, Anand V. ; John, Mathews ; Greet, Brian D. ; Saeed, Mohammad ; Rasekh, Abdi ; Razavi, Mehdi</creatorcontrib><description>Introduction
Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle.
Methods
An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions.
Results
A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P < 0.0001). In post hoc testing, the differences between each pair of regions were significant, as well (P < 0.001 for all).
Conclusion
Impedance values are significantly different among these three anatomical compartments. Therefore, impedance can be potentially used as a means to guide percutaneous epicardial access.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1111/jce.13325</identifier><identifier>PMID: 28833720</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Arrhythmias, Cardiac - diagnostic imaging ; Arrhythmias, Cardiac - physiopathology ; Arrhythmias, Cardiac - surgery ; Cardiac arrhythmia ; catheter ablation ; Catheter Ablation - methods ; Catheters ; Compartments ; Complications ; Electric Impedance ; Electrodes ; Epicardial Mapping - methods ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - physiopathology ; Impedance ; Male ; Mediastinum ; Mediastinum - diagnostic imaging ; Mediastinum - physiopathology ; medical device ; Medical instruments ; percutaneous epicardial access ; Pericardium - diagnostic imaging ; Pericardium - physiopathology ; Sheep ; Variance analysis ; Ventricle ; ventricular tachycardia</subject><ispartof>Journal of cardiovascular electrophysiology, 2017-12, Vol.28 (12), p.1492-1499</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Journal compilation © 2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</citedby><cites>FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</cites><orcidid>0000-0001-7176-5586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjce.13325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjce.13325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28833720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkland, David A.</creatorcontrib><creatorcontrib>Ganapathy, Anand V.</creatorcontrib><creatorcontrib>John, Mathews</creatorcontrib><creatorcontrib>Greet, Brian D.</creatorcontrib><creatorcontrib>Saeed, Mohammad</creatorcontrib><creatorcontrib>Rasekh, Abdi</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><title>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Introduction
Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle.
Methods
An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions.
Results
A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P < 0.0001). In post hoc testing, the differences between each pair of regions were significant, as well (P < 0.001 for all).
Conclusion
Impedance values are significantly different among these three anatomical compartments. Therefore, impedance can be potentially used as a means to guide percutaneous epicardial access.</description><subject>Animals</subject><subject>Arrhythmias, Cardiac - diagnostic imaging</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Arrhythmias, Cardiac - surgery</subject><subject>Cardiac arrhythmia</subject><subject>catheter ablation</subject><subject>Catheter Ablation - methods</subject><subject>Catheters</subject><subject>Compartments</subject><subject>Complications</subject><subject>Electric Impedance</subject><subject>Electrodes</subject><subject>Epicardial Mapping - methods</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - physiopathology</subject><subject>Impedance</subject><subject>Male</subject><subject>Mediastinum</subject><subject>Mediastinum - diagnostic imaging</subject><subject>Mediastinum - physiopathology</subject><subject>medical device</subject><subject>Medical instruments</subject><subject>percutaneous epicardial access</subject><subject>Pericardium - diagnostic imaging</subject><subject>Pericardium - physiopathology</subject><subject>Sheep</subject><subject>Variance analysis</subject><subject>Ventricle</subject><subject>ventricular tachycardia</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctKxDAUBuAgiveFLyABNwpWc2nadCmDV0Q3ui7H5FQz9GbSKrPzEXxGn8SMoy4EAyEhfPlJziFkh7MjHsfx1OARl1KoJbLOVcoSzbN8Oe5ZqhKpc7lGNkKYMsZlxtQqWRNaS5kLtk7CDYL_eHuvHNaWuqZHC61BCsaMHgasZ9S6MLj2cXThCQOFpmsfaY_eGfDWQX1IXTt4MPDiBvCzQwqtjXOIovO0wWjm96GmfRfc4Lp2i6xUUAfc_l43yf3Z6d3kIrm-Pb-cnFwnRiqpklSJnBmlc8RMc4E21YWodMVAV-kDWKWlyJXUmUiLPB6BRZOxIqssB1FZKzfJ_iK3993ziGEoGxcM1jW02I2h5IUUPItXVKR7f-i0G3189FzlKWMyLXRUBwtlfBeCx6rsvWvip0vOynknytiJ8qsT0e5-J44PsQi_8qf0ERwvwKurcfZ_Unk1OV1EfgIbT5Rz</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Burkland, David A.</creator><creator>Ganapathy, Anand V.</creator><creator>John, Mathews</creator><creator>Greet, Brian D.</creator><creator>Saeed, Mohammad</creator><creator>Rasekh, Abdi</creator><creator>Razavi, Mehdi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7176-5586</orcidid></search><sort><creationdate>201712</creationdate><title>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</title><author>Burkland, David A. ; Ganapathy, Anand V. ; John, Mathews ; Greet, Brian D. ; Saeed, Mohammad ; Rasekh, Abdi ; Razavi, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Arrhythmias, Cardiac - diagnostic imaging</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Arrhythmias, Cardiac - surgery</topic><topic>Cardiac arrhythmia</topic><topic>catheter ablation</topic><topic>Catheter Ablation - methods</topic><topic>Catheters</topic><topic>Compartments</topic><topic>Complications</topic><topic>Electric Impedance</topic><topic>Electrodes</topic><topic>Epicardial Mapping - methods</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - physiopathology</topic><topic>Impedance</topic><topic>Male</topic><topic>Mediastinum</topic><topic>Mediastinum - diagnostic imaging</topic><topic>Mediastinum - physiopathology</topic><topic>medical device</topic><topic>Medical instruments</topic><topic>percutaneous epicardial access</topic><topic>Pericardium - diagnostic imaging</topic><topic>Pericardium - physiopathology</topic><topic>Sheep</topic><topic>Variance analysis</topic><topic>Ventricle</topic><topic>ventricular tachycardia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkland, David A.</creatorcontrib><creatorcontrib>Ganapathy, Anand V.</creatorcontrib><creatorcontrib>John, Mathews</creatorcontrib><creatorcontrib>Greet, Brian D.</creatorcontrib><creatorcontrib>Saeed, Mohammad</creatorcontrib><creatorcontrib>Rasekh, Abdi</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkland, David A.</au><au>Ganapathy, Anand V.</au><au>John, Mathews</au><au>Greet, Brian D.</au><au>Saeed, Mohammad</au><au>Rasekh, Abdi</au><au>Razavi, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2017-12</date><risdate>2017</risdate><volume>28</volume><issue>12</issue><spage>1492</spage><epage>1499</epage><pages>1492-1499</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Introduction
Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle.
Methods
An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions.
Results
A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P < 0.0001). In post hoc testing, the differences between each pair of regions were significant, as well (P < 0.001 for all).
Conclusion
Impedance values are significantly different among these three anatomical compartments. Therefore, impedance can be potentially used as a means to guide percutaneous epicardial access.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28833720</pmid><doi>10.1111/jce.13325</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7176-5586</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-3873 |
ispartof | Journal of cardiovascular electrophysiology, 2017-12, Vol.28 (12), p.1492-1499 |
issn | 1045-3873 1540-8167 |
language | eng |
recordid | cdi_proquest_miscellaneous_1932166095 |
source | MEDLINE; Wiley-Blackwell Full Collection |
subjects | Animals Arrhythmias, Cardiac - diagnostic imaging Arrhythmias, Cardiac - physiopathology Arrhythmias, Cardiac - surgery Cardiac arrhythmia catheter ablation Catheter Ablation - methods Catheters Compartments Complications Electric Impedance Electrodes Epicardial Mapping - methods Heart Ventricles - diagnostic imaging Heart Ventricles - physiopathology Impedance Male Mediastinum Mediastinum - diagnostic imaging Mediastinum - physiopathology medical device Medical instruments percutaneous epicardial access Pericardium - diagnostic imaging Pericardium - physiopathology Sheep Variance analysis Ventricle ventricular tachycardia |
title | Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90field%20impedance%20accurately%20distinguishes%20among%20pericardial,%20intracavitary,%20and%20anterior%20mediastinal%20position&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=Burkland,%20David%20A.&rft.date=2017-12&rft.volume=28&rft.issue=12&rft.spage=1492&rft.epage=1499&rft.pages=1492-1499&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1111/jce.13325&rft_dat=%3Cproquest_cross%3E1932166095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974003498&rft_id=info:pmid/28833720&rfr_iscdi=true |