Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position

Introduction Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular electrophysiology 2017-12, Vol.28 (12), p.1492-1499
Hauptverfasser: Burkland, David A., Ganapathy, Anand V., John, Mathews, Greet, Brian D., Saeed, Mohammad, Rasekh, Abdi, Razavi, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 12
container_start_page 1492
container_title Journal of cardiovascular electrophysiology
container_volume 28
creator Burkland, David A.
Ganapathy, Anand V.
John, Mathews
Greet, Brian D.
Saeed, Mohammad
Rasekh, Abdi
Razavi, Mehdi
description Introduction Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle. Methods An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions. Results A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P 
doi_str_mv 10.1111/jce.13325
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932166095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932166095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</originalsourceid><addsrcrecordid>eNp10ctKxDAUBuAgiveFLyABNwpWc2nadCmDV0Q3ui7H5FQz9GbSKrPzEXxGn8SMoy4EAyEhfPlJziFkh7MjHsfx1OARl1KoJbLOVcoSzbN8Oe5ZqhKpc7lGNkKYMsZlxtQqWRNaS5kLtk7CDYL_eHuvHNaWuqZHC61BCsaMHgasZ9S6MLj2cXThCQOFpmsfaY_eGfDWQX1IXTt4MPDiBvCzQwqtjXOIovO0wWjm96GmfRfc4Lp2i6xUUAfc_l43yf3Z6d3kIrm-Pb-cnFwnRiqpklSJnBmlc8RMc4E21YWodMVAV-kDWKWlyJXUmUiLPB6BRZOxIqssB1FZKzfJ_iK3993ziGEoGxcM1jW02I2h5IUUPItXVKR7f-i0G3189FzlKWMyLXRUBwtlfBeCx6rsvWvip0vOynknytiJ8qsT0e5-J44PsQi_8qf0ERwvwKurcfZ_Unk1OV1EfgIbT5Rz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974003498</pqid></control><display><type>article</type><title>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</title><source>MEDLINE</source><source>Wiley-Blackwell Full Collection</source><creator>Burkland, David A. ; Ganapathy, Anand V. ; John, Mathews ; Greet, Brian D. ; Saeed, Mohammad ; Rasekh, Abdi ; Razavi, Mehdi</creator><creatorcontrib>Burkland, David A. ; Ganapathy, Anand V. ; John, Mathews ; Greet, Brian D. ; Saeed, Mohammad ; Rasekh, Abdi ; Razavi, Mehdi</creatorcontrib><description>Introduction Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle. Methods An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions. Results A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P &lt; 0.0001). In post hoc testing, the differences between each pair of regions were significant, as well (P &lt; 0.001 for all). Conclusion Impedance values are significantly different among these three anatomical compartments. Therefore, impedance can be potentially used as a means to guide percutaneous epicardial access.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1111/jce.13325</identifier><identifier>PMID: 28833720</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Arrhythmias, Cardiac - diagnostic imaging ; Arrhythmias, Cardiac - physiopathology ; Arrhythmias, Cardiac - surgery ; Cardiac arrhythmia ; catheter ablation ; Catheter Ablation - methods ; Catheters ; Compartments ; Complications ; Electric Impedance ; Electrodes ; Epicardial Mapping - methods ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - physiopathology ; Impedance ; Male ; Mediastinum ; Mediastinum - diagnostic imaging ; Mediastinum - physiopathology ; medical device ; Medical instruments ; percutaneous epicardial access ; Pericardium - diagnostic imaging ; Pericardium - physiopathology ; Sheep ; Variance analysis ; Ventricle ; ventricular tachycardia</subject><ispartof>Journal of cardiovascular electrophysiology, 2017-12, Vol.28 (12), p.1492-1499</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Journal compilation © 2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</citedby><cites>FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</cites><orcidid>0000-0001-7176-5586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjce.13325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjce.13325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28833720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkland, David A.</creatorcontrib><creatorcontrib>Ganapathy, Anand V.</creatorcontrib><creatorcontrib>John, Mathews</creatorcontrib><creatorcontrib>Greet, Brian D.</creatorcontrib><creatorcontrib>Saeed, Mohammad</creatorcontrib><creatorcontrib>Rasekh, Abdi</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><title>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Introduction Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle. Methods An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions. Results A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P &lt; 0.0001). In post hoc testing, the differences between each pair of regions were significant, as well (P &lt; 0.001 for all). Conclusion Impedance values are significantly different among these three anatomical compartments. Therefore, impedance can be potentially used as a means to guide percutaneous epicardial access.</description><subject>Animals</subject><subject>Arrhythmias, Cardiac - diagnostic imaging</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Arrhythmias, Cardiac - surgery</subject><subject>Cardiac arrhythmia</subject><subject>catheter ablation</subject><subject>Catheter Ablation - methods</subject><subject>Catheters</subject><subject>Compartments</subject><subject>Complications</subject><subject>Electric Impedance</subject><subject>Electrodes</subject><subject>Epicardial Mapping - methods</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - physiopathology</subject><subject>Impedance</subject><subject>Male</subject><subject>Mediastinum</subject><subject>Mediastinum - diagnostic imaging</subject><subject>Mediastinum - physiopathology</subject><subject>medical device</subject><subject>Medical instruments</subject><subject>percutaneous epicardial access</subject><subject>Pericardium - diagnostic imaging</subject><subject>Pericardium - physiopathology</subject><subject>Sheep</subject><subject>Variance analysis</subject><subject>Ventricle</subject><subject>ventricular tachycardia</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctKxDAUBuAgiveFLyABNwpWc2nadCmDV0Q3ui7H5FQz9GbSKrPzEXxGn8SMoy4EAyEhfPlJziFkh7MjHsfx1OARl1KoJbLOVcoSzbN8Oe5ZqhKpc7lGNkKYMsZlxtQqWRNaS5kLtk7CDYL_eHuvHNaWuqZHC61BCsaMHgasZ9S6MLj2cXThCQOFpmsfaY_eGfDWQX1IXTt4MPDiBvCzQwqtjXOIovO0wWjm96GmfRfc4Lp2i6xUUAfc_l43yf3Z6d3kIrm-Pb-cnFwnRiqpklSJnBmlc8RMc4E21YWodMVAV-kDWKWlyJXUmUiLPB6BRZOxIqssB1FZKzfJ_iK3993ziGEoGxcM1jW02I2h5IUUPItXVKR7f-i0G3189FzlKWMyLXRUBwtlfBeCx6rsvWvip0vOynknytiJ8qsT0e5-J44PsQi_8qf0ERwvwKurcfZ_Unk1OV1EfgIbT5Rz</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Burkland, David A.</creator><creator>Ganapathy, Anand V.</creator><creator>John, Mathews</creator><creator>Greet, Brian D.</creator><creator>Saeed, Mohammad</creator><creator>Rasekh, Abdi</creator><creator>Razavi, Mehdi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7176-5586</orcidid></search><sort><creationdate>201712</creationdate><title>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</title><author>Burkland, David A. ; Ganapathy, Anand V. ; John, Mathews ; Greet, Brian D. ; Saeed, Mohammad ; Rasekh, Abdi ; Razavi, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-45270c587ee6812ed4892f8f0a8f4bad58327538624978f4adec6096fd1a2fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Arrhythmias, Cardiac - diagnostic imaging</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Arrhythmias, Cardiac - surgery</topic><topic>Cardiac arrhythmia</topic><topic>catheter ablation</topic><topic>Catheter Ablation - methods</topic><topic>Catheters</topic><topic>Compartments</topic><topic>Complications</topic><topic>Electric Impedance</topic><topic>Electrodes</topic><topic>Epicardial Mapping - methods</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - physiopathology</topic><topic>Impedance</topic><topic>Male</topic><topic>Mediastinum</topic><topic>Mediastinum - diagnostic imaging</topic><topic>Mediastinum - physiopathology</topic><topic>medical device</topic><topic>Medical instruments</topic><topic>percutaneous epicardial access</topic><topic>Pericardium - diagnostic imaging</topic><topic>Pericardium - physiopathology</topic><topic>Sheep</topic><topic>Variance analysis</topic><topic>Ventricle</topic><topic>ventricular tachycardia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkland, David A.</creatorcontrib><creatorcontrib>Ganapathy, Anand V.</creatorcontrib><creatorcontrib>John, Mathews</creatorcontrib><creatorcontrib>Greet, Brian D.</creatorcontrib><creatorcontrib>Saeed, Mohammad</creatorcontrib><creatorcontrib>Rasekh, Abdi</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkland, David A.</au><au>Ganapathy, Anand V.</au><au>John, Mathews</au><au>Greet, Brian D.</au><au>Saeed, Mohammad</au><au>Rasekh, Abdi</au><au>Razavi, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2017-12</date><risdate>2017</risdate><volume>28</volume><issue>12</issue><spage>1492</spage><epage>1499</epage><pages>1492-1499</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Introduction Epicardial catheter ablation is increasingly used to treat arrhythmias with an epicardial component. Nevertheless, percutaneous epicardial access remains associated with a significant risk of major complications. Developing a technology capable of confirming proper placement within the pericardial space could decrease complication rates. The purpose of this study was to examine differences in bioimpedance among the pericardial space, anterior mediastinum, and right ventricle. Methods An ovine model (n = 3) was used in this proof‐of‐concept study. A decapolar catheter was used to collect bipolar impedance readings; data were collected between each of five electrode pairs of varying distances. Data were collected from three test regions: the pericardial space, anterior mediastinum, and right ventricle. A control region in the inferior vena cava was used to normalize the data from the test regions. Analysis of variance was used to test for differences among regions. Results A total of 10 impedance values were collected in each animal between each of the five electrode pairs in the three test regions (n = 340) and the control region (n = 145). The average normalized impedance values were significantly different among the pericardial space (1.760 ± 0.370), anterior mediastinum (3.209 ± 0.227), and right ventricle (1.024 ± 0.207; P &lt; 0.0001). In post hoc testing, the differences between each pair of regions were significant, as well (P &lt; 0.001 for all). Conclusion Impedance values are significantly different among these three anatomical compartments. Therefore, impedance can be potentially used as a means to guide percutaneous epicardial access.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28833720</pmid><doi>10.1111/jce.13325</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7176-5586</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-3873
ispartof Journal of cardiovascular electrophysiology, 2017-12, Vol.28 (12), p.1492-1499
issn 1045-3873
1540-8167
language eng
recordid cdi_proquest_miscellaneous_1932166095
source MEDLINE; Wiley-Blackwell Full Collection
subjects Animals
Arrhythmias, Cardiac - diagnostic imaging
Arrhythmias, Cardiac - physiopathology
Arrhythmias, Cardiac - surgery
Cardiac arrhythmia
catheter ablation
Catheter Ablation - methods
Catheters
Compartments
Complications
Electric Impedance
Electrodes
Epicardial Mapping - methods
Heart Ventricles - diagnostic imaging
Heart Ventricles - physiopathology
Impedance
Male
Mediastinum
Mediastinum - diagnostic imaging
Mediastinum - physiopathology
medical device
Medical instruments
percutaneous epicardial access
Pericardium - diagnostic imaging
Pericardium - physiopathology
Sheep
Variance analysis
Ventricle
ventricular tachycardia
title Near‐field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90field%20impedance%20accurately%20distinguishes%20among%20pericardial,%20intracavitary,%20and%20anterior%20mediastinal%20position&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=Burkland,%20David%20A.&rft.date=2017-12&rft.volume=28&rft.issue=12&rft.spage=1492&rft.epage=1499&rft.pages=1492-1499&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1111/jce.13325&rft_dat=%3Cproquest_cross%3E1932166095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974003498&rft_id=info:pmid/28833720&rfr_iscdi=true