Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain

Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroendocrinology 2017-09, Vol.29 (9), p.n/a
Hauptverfasser: Monteiro, L. R. N., Marangon, P. B., Elias, L. L. K., Reis, L. C., Antunes‐Rodrigues, J., Mecawi, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Journal of neuroendocrinology
container_volume 29
creator Monteiro, L. R. N.
Marangon, P. B.
Elias, L. L. K.
Reis, L. C.
Antunes‐Rodrigues, J.
Mecawi, A. S.
description Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.
doi_str_mv 10.1111/jne.12530
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932163722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942957337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</originalsourceid><addsrcrecordid>eNp10c1u1DAQB3ALgehSOPACyBKX9pBu_BHHPqKqUKqqHIBz5CSzi5fECbZD2RuP0BfhpfokTJqFAxK-jGT95m-PhpCXLD9jeNY7D2eMFyJ_RFZMqCLjmqvHZJWbQmSaGXlEnsW4y3NWInpKjrjWQgnNV-TXx6F1U0_tOEJyCSh0rsHa0npPu-H2_uddXETrIFEXaQsj-BZ8ooOno5RryWnv0rAFj9g2yX23c_8YhgTO06_O2wj0BH6kYBvouqmzgUa39bbDhgBbvJgbDpCt-Sk9xDh8AiPSF6B1sM4_J082tovw4lCPyee3F5_OL7PrD-_en7-5zhqBA2ZcQglK5WVruOCm3ggoOTO6kI1sdaONFbWqBWK8lRo2rNCKcaWYsIUwTByTkyUXh_g2QUxV7-L8d-thmGLFjOBMiZJzpK__obthCjjbrCQ3RSlEiep0UU0YYgywqcbgehv2FcureYcV7rB62CHaV4fEqe6h_Sv_LA3BegG3roP9_5Oqq5uLJfI3jSOooQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942957337</pqid></control><display><type>article</type><title>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Monteiro, L. R. N. ; Marangon, P. B. ; Elias, L. L. K. ; Reis, L. C. ; Antunes‐Rodrigues, J. ; Mecawi, A. S.</creator><creatorcontrib>Monteiro, L. R. N. ; Marangon, P. B. ; Elias, L. L. K. ; Reis, L. C. ; Antunes‐Rodrigues, J. ; Mecawi, A. S.</creatorcontrib><description>Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.</description><identifier>ISSN: 0953-8194</identifier><identifier>EISSN: 1365-2826</identifier><identifier>DOI: 10.1111/jne.12530</identifier><identifier>PMID: 28836382</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Activation ; Angiotensin ; Angiotensin II ; Angiotensin II Type 1 Receptor Blockers - administration &amp; dosage ; Animals ; Appetite ; Brain - metabolism ; Diet, Sodium-Restricted ; ERK1/2 ; Extracellular signal-regulated kinase ; Hypothalamus ; Kinases ; low‐sodium diet ; Male ; MAP kinase ; Microinjection ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; p44/42 MAPK ; Phosphorylation ; Protein kinase ; Rats, Wistar ; Receptor, Angiotensin, Type 1 - metabolism ; Signal Transduction ; Sodium ; sodium appetite ; Sodium, Dietary ; Water intake ; Water intakes</subject><ispartof>Journal of neuroendocrinology, 2017-09, Vol.29 (9), p.n/a</ispartof><rights>2017 British Society for Neuroendocrinology</rights><rights>2017 British Society for Neuroendocrinology.</rights><rights>Copyright © 2017 British Society for Neuroendocrinology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</citedby><cites>FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</cites><orcidid>0000-0003-4517-6221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjne.12530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjne.12530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28836382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, L. R. N.</creatorcontrib><creatorcontrib>Marangon, P. B.</creatorcontrib><creatorcontrib>Elias, L. L. K.</creatorcontrib><creatorcontrib>Reis, L. C.</creatorcontrib><creatorcontrib>Antunes‐Rodrigues, J.</creatorcontrib><creatorcontrib>Mecawi, A. S.</creatorcontrib><title>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</title><title>Journal of neuroendocrinology</title><addtitle>J Neuroendocrinol</addtitle><description>Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.</description><subject>Activation</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II Type 1 Receptor Blockers - administration &amp; dosage</subject><subject>Animals</subject><subject>Appetite</subject><subject>Brain - metabolism</subject><subject>Diet, Sodium-Restricted</subject><subject>ERK1/2</subject><subject>Extracellular signal-regulated kinase</subject><subject>Hypothalamus</subject><subject>Kinases</subject><subject>low‐sodium diet</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Microinjection</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>p44/42 MAPK</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Rats, Wistar</subject><subject>Receptor, Angiotensin, Type 1 - metabolism</subject><subject>Signal Transduction</subject><subject>Sodium</subject><subject>sodium appetite</subject><subject>Sodium, Dietary</subject><subject>Water intake</subject><subject>Water intakes</subject><issn>0953-8194</issn><issn>1365-2826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAQB3ALgehSOPACyBKX9pBu_BHHPqKqUKqqHIBz5CSzi5fECbZD2RuP0BfhpfokTJqFAxK-jGT95m-PhpCXLD9jeNY7D2eMFyJ_RFZMqCLjmqvHZJWbQmSaGXlEnsW4y3NWInpKjrjWQgnNV-TXx6F1U0_tOEJyCSh0rsHa0npPu-H2_uddXETrIFEXaQsj-BZ8ooOno5RryWnv0rAFj9g2yX23c_8YhgTO06_O2wj0BH6kYBvouqmzgUa39bbDhgBbvJgbDpCt-Sk9xDh8AiPSF6B1sM4_J082tovw4lCPyee3F5_OL7PrD-_en7-5zhqBA2ZcQglK5WVruOCm3ggoOTO6kI1sdaONFbWqBWK8lRo2rNCKcaWYsIUwTByTkyUXh_g2QUxV7-L8d-thmGLFjOBMiZJzpK__obthCjjbrCQ3RSlEiep0UU0YYgywqcbgehv2FcureYcV7rB62CHaV4fEqe6h_Sv_LA3BegG3roP9_5Oqq5uLJfI3jSOooQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Monteiro, L. R. N.</creator><creator>Marangon, P. B.</creator><creator>Elias, L. L. K.</creator><creator>Reis, L. C.</creator><creator>Antunes‐Rodrigues, J.</creator><creator>Mecawi, A. S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4517-6221</orcidid></search><sort><creationdate>201709</creationdate><title>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</title><author>Monteiro, L. R. N. ; Marangon, P. B. ; Elias, L. L. K. ; Reis, L. C. ; Antunes‐Rodrigues, J. ; Mecawi, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II Type 1 Receptor Blockers - administration &amp; dosage</topic><topic>Animals</topic><topic>Appetite</topic><topic>Brain - metabolism</topic><topic>Diet, Sodium-Restricted</topic><topic>ERK1/2</topic><topic>Extracellular signal-regulated kinase</topic><topic>Hypothalamus</topic><topic>Kinases</topic><topic>low‐sodium diet</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Microinjection</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>p44/42 MAPK</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Rats, Wistar</topic><topic>Receptor, Angiotensin, Type 1 - metabolism</topic><topic>Signal Transduction</topic><topic>Sodium</topic><topic>sodium appetite</topic><topic>Sodium, Dietary</topic><topic>Water intake</topic><topic>Water intakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, L. R. N.</creatorcontrib><creatorcontrib>Marangon, P. B.</creatorcontrib><creatorcontrib>Elias, L. L. K.</creatorcontrib><creatorcontrib>Reis, L. C.</creatorcontrib><creatorcontrib>Antunes‐Rodrigues, J.</creatorcontrib><creatorcontrib>Mecawi, A. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, L. R. N.</au><au>Marangon, P. B.</au><au>Elias, L. L. K.</au><au>Reis, L. C.</au><au>Antunes‐Rodrigues, J.</au><au>Mecawi, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</atitle><jtitle>Journal of neuroendocrinology</jtitle><addtitle>J Neuroendocrinol</addtitle><date>2017-09</date><risdate>2017</risdate><volume>29</volume><issue>9</issue><epage>n/a</epage><issn>0953-8194</issn><eissn>1365-2826</eissn><abstract>Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28836382</pmid><doi>10.1111/jne.12530</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4517-6221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8194
ispartof Journal of neuroendocrinology, 2017-09, Vol.29 (9), p.n/a
issn 0953-8194
1365-2826
language eng
recordid cdi_proquest_miscellaneous_1932163722
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Activation
Angiotensin
Angiotensin II
Angiotensin II Type 1 Receptor Blockers - administration & dosage
Animals
Appetite
Brain - metabolism
Diet, Sodium-Restricted
ERK1/2
Extracellular signal-regulated kinase
Hypothalamus
Kinases
low‐sodium diet
Male
MAP kinase
Microinjection
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - metabolism
p44/42 MAPK
Phosphorylation
Protein kinase
Rats, Wistar
Receptor, Angiotensin, Type 1 - metabolism
Signal Transduction
Sodium
sodium appetite
Sodium, Dietary
Water intake
Water intakes
title Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20appetite%20elicited%20by%20low%E2%80%90sodium%20diet%20is%20dependent%20on%20p44/42%20mitogen%E2%80%90activated%20protein%20kinase%20(extracellular%20signal%E2%80%90regulated%20kinase%201/2)%20activation%20in%20the%20brain&rft.jtitle=Journal%20of%20neuroendocrinology&rft.au=Monteiro,%20L.%20R.%20N.&rft.date=2017-09&rft.volume=29&rft.issue=9&rft.epage=n/a&rft.issn=0953-8194&rft.eissn=1365-2826&rft_id=info:doi/10.1111/jne.12530&rft_dat=%3Cproquest_cross%3E1942957337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942957337&rft_id=info:pmid/28836382&rfr_iscdi=true