Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain
Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase...
Gespeichert in:
Veröffentlicht in: | Journal of neuroendocrinology 2017-09, Vol.29 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of neuroendocrinology |
container_volume | 29 |
creator | Monteiro, L. R. N. Marangon, P. B. Elias, L. L. K. Reis, L. C. Antunes‐Rodrigues, J. Mecawi, A. S. |
description | Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption. |
doi_str_mv | 10.1111/jne.12530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1932163722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942957337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</originalsourceid><addsrcrecordid>eNp10c1u1DAQB3ALgehSOPACyBKX9pBu_BHHPqKqUKqqHIBz5CSzi5fECbZD2RuP0BfhpfokTJqFAxK-jGT95m-PhpCXLD9jeNY7D2eMFyJ_RFZMqCLjmqvHZJWbQmSaGXlEnsW4y3NWInpKjrjWQgnNV-TXx6F1U0_tOEJyCSh0rsHa0npPu-H2_uddXETrIFEXaQsj-BZ8ooOno5RryWnv0rAFj9g2yX23c_8YhgTO06_O2wj0BH6kYBvouqmzgUa39bbDhgBbvJgbDpCt-Sk9xDh8AiPSF6B1sM4_J082tovw4lCPyee3F5_OL7PrD-_en7-5zhqBA2ZcQglK5WVruOCm3ggoOTO6kI1sdaONFbWqBWK8lRo2rNCKcaWYsIUwTByTkyUXh_g2QUxV7-L8d-thmGLFjOBMiZJzpK__obthCjjbrCQ3RSlEiep0UU0YYgywqcbgehv2FcureYcV7rB62CHaV4fEqe6h_Sv_LA3BegG3roP9_5Oqq5uLJfI3jSOooQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942957337</pqid></control><display><type>article</type><title>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Monteiro, L. R. N. ; Marangon, P. B. ; Elias, L. L. K. ; Reis, L. C. ; Antunes‐Rodrigues, J. ; Mecawi, A. S.</creator><creatorcontrib>Monteiro, L. R. N. ; Marangon, P. B. ; Elias, L. L. K. ; Reis, L. C. ; Antunes‐Rodrigues, J. ; Mecawi, A. S.</creatorcontrib><description>Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.</description><identifier>ISSN: 0953-8194</identifier><identifier>EISSN: 1365-2826</identifier><identifier>DOI: 10.1111/jne.12530</identifier><identifier>PMID: 28836382</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Activation ; Angiotensin ; Angiotensin II ; Angiotensin II Type 1 Receptor Blockers - administration & dosage ; Animals ; Appetite ; Brain - metabolism ; Diet, Sodium-Restricted ; ERK1/2 ; Extracellular signal-regulated kinase ; Hypothalamus ; Kinases ; low‐sodium diet ; Male ; MAP kinase ; Microinjection ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; p44/42 MAPK ; Phosphorylation ; Protein kinase ; Rats, Wistar ; Receptor, Angiotensin, Type 1 - metabolism ; Signal Transduction ; Sodium ; sodium appetite ; Sodium, Dietary ; Water intake ; Water intakes</subject><ispartof>Journal of neuroendocrinology, 2017-09, Vol.29 (9), p.n/a</ispartof><rights>2017 British Society for Neuroendocrinology</rights><rights>2017 British Society for Neuroendocrinology.</rights><rights>Copyright © 2017 British Society for Neuroendocrinology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</citedby><cites>FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</cites><orcidid>0000-0003-4517-6221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjne.12530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjne.12530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28836382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, L. R. N.</creatorcontrib><creatorcontrib>Marangon, P. B.</creatorcontrib><creatorcontrib>Elias, L. L. K.</creatorcontrib><creatorcontrib>Reis, L. C.</creatorcontrib><creatorcontrib>Antunes‐Rodrigues, J.</creatorcontrib><creatorcontrib>Mecawi, A. S.</creatorcontrib><title>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</title><title>Journal of neuroendocrinology</title><addtitle>J Neuroendocrinol</addtitle><description>Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.</description><subject>Activation</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II Type 1 Receptor Blockers - administration & dosage</subject><subject>Animals</subject><subject>Appetite</subject><subject>Brain - metabolism</subject><subject>Diet, Sodium-Restricted</subject><subject>ERK1/2</subject><subject>Extracellular signal-regulated kinase</subject><subject>Hypothalamus</subject><subject>Kinases</subject><subject>low‐sodium diet</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Microinjection</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>p44/42 MAPK</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Rats, Wistar</subject><subject>Receptor, Angiotensin, Type 1 - metabolism</subject><subject>Signal Transduction</subject><subject>Sodium</subject><subject>sodium appetite</subject><subject>Sodium, Dietary</subject><subject>Water intake</subject><subject>Water intakes</subject><issn>0953-8194</issn><issn>1365-2826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAQB3ALgehSOPACyBKX9pBu_BHHPqKqUKqqHIBz5CSzi5fECbZD2RuP0BfhpfokTJqFAxK-jGT95m-PhpCXLD9jeNY7D2eMFyJ_RFZMqCLjmqvHZJWbQmSaGXlEnsW4y3NWInpKjrjWQgnNV-TXx6F1U0_tOEJyCSh0rsHa0npPu-H2_uddXETrIFEXaQsj-BZ8ooOno5RryWnv0rAFj9g2yX23c_8YhgTO06_O2wj0BH6kYBvouqmzgUa39bbDhgBbvJgbDpCt-Sk9xDh8AiPSF6B1sM4_J082tovw4lCPyee3F5_OL7PrD-_en7-5zhqBA2ZcQglK5WVruOCm3ggoOTO6kI1sdaONFbWqBWK8lRo2rNCKcaWYsIUwTByTkyUXh_g2QUxV7-L8d-thmGLFjOBMiZJzpK__obthCjjbrCQ3RSlEiep0UU0YYgywqcbgehv2FcureYcV7rB62CHaV4fEqe6h_Sv_LA3BegG3roP9_5Oqq5uLJfI3jSOooQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Monteiro, L. R. N.</creator><creator>Marangon, P. B.</creator><creator>Elias, L. L. K.</creator><creator>Reis, L. C.</creator><creator>Antunes‐Rodrigues, J.</creator><creator>Mecawi, A. S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4517-6221</orcidid></search><sort><creationdate>201709</creationdate><title>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</title><author>Monteiro, L. R. N. ; Marangon, P. B. ; Elias, L. L. K. ; Reis, L. C. ; Antunes‐Rodrigues, J. ; Mecawi, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-24e7e6607d92329bf3e7219854c4d8c89a3b6b3c3521948ef1586126613a53913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II Type 1 Receptor Blockers - administration & dosage</topic><topic>Animals</topic><topic>Appetite</topic><topic>Brain - metabolism</topic><topic>Diet, Sodium-Restricted</topic><topic>ERK1/2</topic><topic>Extracellular signal-regulated kinase</topic><topic>Hypothalamus</topic><topic>Kinases</topic><topic>low‐sodium diet</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Microinjection</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>p44/42 MAPK</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Rats, Wistar</topic><topic>Receptor, Angiotensin, Type 1 - metabolism</topic><topic>Signal Transduction</topic><topic>Sodium</topic><topic>sodium appetite</topic><topic>Sodium, Dietary</topic><topic>Water intake</topic><topic>Water intakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, L. R. N.</creatorcontrib><creatorcontrib>Marangon, P. B.</creatorcontrib><creatorcontrib>Elias, L. L. K.</creatorcontrib><creatorcontrib>Reis, L. C.</creatorcontrib><creatorcontrib>Antunes‐Rodrigues, J.</creatorcontrib><creatorcontrib>Mecawi, A. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, L. R. N.</au><au>Marangon, P. B.</au><au>Elias, L. L. K.</au><au>Reis, L. C.</au><au>Antunes‐Rodrigues, J.</au><au>Mecawi, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain</atitle><jtitle>Journal of neuroendocrinology</jtitle><addtitle>J Neuroendocrinol</addtitle><date>2017-09</date><risdate>2017</risdate><volume>29</volume><issue>9</issue><epage>n/a</epage><issn>0953-8194</issn><eissn>1365-2826</eissn><abstract>Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen‐activated protein kinase (MAPK) pathway, which has previously been linked to Ang II‐induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low‐sodium diet consumption. An increase in extracellular signal‐regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low‐sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low‐sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low‐sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low‐sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low‐sodium diet groups. These data indicate that low‐sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low‐sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low‐sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low‐sodium diet consumption.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28836382</pmid><doi>10.1111/jne.12530</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4517-6221</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8194 |
ispartof | Journal of neuroendocrinology, 2017-09, Vol.29 (9), p.n/a |
issn | 0953-8194 1365-2826 |
language | eng |
recordid | cdi_proquest_miscellaneous_1932163722 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Activation Angiotensin Angiotensin II Angiotensin II Type 1 Receptor Blockers - administration & dosage Animals Appetite Brain - metabolism Diet, Sodium-Restricted ERK1/2 Extracellular signal-regulated kinase Hypothalamus Kinases low‐sodium diet Male MAP kinase Microinjection Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - metabolism p44/42 MAPK Phosphorylation Protein kinase Rats, Wistar Receptor, Angiotensin, Type 1 - metabolism Signal Transduction Sodium sodium appetite Sodium, Dietary Water intake Water intakes |
title | Sodium appetite elicited by low‐sodium diet is dependent on p44/42 mitogen‐activated protein kinase (extracellular signal‐regulated kinase 1/2) activation in the brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20appetite%20elicited%20by%20low%E2%80%90sodium%20diet%20is%20dependent%20on%20p44/42%20mitogen%E2%80%90activated%20protein%20kinase%20(extracellular%20signal%E2%80%90regulated%20kinase%201/2)%20activation%20in%20the%20brain&rft.jtitle=Journal%20of%20neuroendocrinology&rft.au=Monteiro,%20L.%20R.%20N.&rft.date=2017-09&rft.volume=29&rft.issue=9&rft.epage=n/a&rft.issn=0953-8194&rft.eissn=1365-2826&rft_id=info:doi/10.1111/jne.12530&rft_dat=%3Cproquest_cross%3E1942957337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942957337&rft_id=info:pmid/28836382&rfr_iscdi=true |