Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model
This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model stat...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 2008-10, Vol.31 (10), p.1309-1324 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1324 |
---|---|
container_issue | 10 |
container_start_page | 1309 |
container_title | Advances in water resources |
container_volume | 31 |
creator | Clark, Martyn P. Rupp, David E. Woods, Ross A. Zheng, Xiaogu Ibbitt, Richard P. Slater, Andrew G. Schmidt, Jochen Uddstrom, Michael J. |
description | This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes. |
doi_str_mv | 10.1016/j.advwatres.2008.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19316115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170808001012</els_id><sourcerecordid>19316115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEEkPhGeoN7BLsOIkTdlUFtKISC5i15Z_rjkdOPPh6ZtTn4IXxdKqKHUjW9eY75x7dU1WXjDaMsuHjtlH2cFQ5ATYtpWNDh4bS_kW1YqNo62noxctqRTmdaibo-Lp6g7ilBexEu6p-3zzYFEO890YFYlVWRCH62QeVfVzI0ecNyRsgsCDMOgD5psKsFuJ8yJA-kTUCiY5g2a9mF-KRRI2QDo9yJDmS_a7YQiHKROIXooj1hfd6n8GSzd8B5mghvK1eORUQ3j39F9X6y-ef1zf13fevt9dXd7XpOMu1EBpGVR4XXFgzcA2sH_XkxnbsWg3WONdPugfVt6bXdADKXDf2RnS2pZryi-rD2XeX4q89YJazRwMhqAXiHiWbOBsY6_8L5KwbCyjOoEkRMYGTu-RnlR4ko_LUltzK57bkqS1JB1naKsr3TysUlkO4pBbj8VneUtHxbjplvjxzTkWp7lNh1j9ayjhl_VQKPzldnQkopzt4SBKNh8WA9QlMljb6f6b5AwZVvMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19313148</pqid></control><display><type>article</type><title>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Clark, Martyn P. ; Rupp, David E. ; Woods, Ross A. ; Zheng, Xiaogu ; Ibbitt, Richard P. ; Slater, Andrew G. ; Schmidt, Jochen ; Uddstrom, Michael J.</creator><creatorcontrib>Clark, Martyn P. ; Rupp, David E. ; Woods, Ross A. ; Zheng, Xiaogu ; Ibbitt, Richard P. ; Slater, Andrew G. ; Schmidt, Jochen ; Uddstrom, Michael J.</creatorcontrib><description>This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2008.06.005</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Assimilation ; Earth sciences ; Earth, ocean, space ; Ensemble ; ensemble Kalman filter ; Exact sciences and technology ; hydrologic data ; hydrologic models ; Hydrology ; Hydrology. Hydrogeology ; mathematical models ; stream flow ; Streamflow</subject><ispartof>Advances in water resources, 2008-10, Vol.31 (10), p.1309-1324</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</citedby><cites>FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2008.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20743490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clark, Martyn P.</creatorcontrib><creatorcontrib>Rupp, David E.</creatorcontrib><creatorcontrib>Woods, Ross A.</creatorcontrib><creatorcontrib>Zheng, Xiaogu</creatorcontrib><creatorcontrib>Ibbitt, Richard P.</creatorcontrib><creatorcontrib>Slater, Andrew G.</creatorcontrib><creatorcontrib>Schmidt, Jochen</creatorcontrib><creatorcontrib>Uddstrom, Michael J.</creatorcontrib><title>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</title><title>Advances in water resources</title><description>This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.</description><subject>Assimilation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ensemble</subject><subject>ensemble Kalman filter</subject><subject>Exact sciences and technology</subject><subject>hydrologic data</subject><subject>hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>stream flow</subject><subject>Streamflow</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSMEEkPhGeoN7BLsOIkTdlUFtKISC5i15Z_rjkdOPPh6ZtTn4IXxdKqKHUjW9eY75x7dU1WXjDaMsuHjtlH2cFQ5ATYtpWNDh4bS_kW1YqNo62noxctqRTmdaibo-Lp6g7ilBexEu6p-3zzYFEO890YFYlVWRCH62QeVfVzI0ecNyRsgsCDMOgD5psKsFuJ8yJA-kTUCiY5g2a9mF-KRRI2QDo9yJDmS_a7YQiHKROIXooj1hfd6n8GSzd8B5mghvK1eORUQ3j39F9X6y-ef1zf13fevt9dXd7XpOMu1EBpGVR4XXFgzcA2sH_XkxnbsWg3WONdPugfVt6bXdADKXDf2RnS2pZryi-rD2XeX4q89YJazRwMhqAXiHiWbOBsY6_8L5KwbCyjOoEkRMYGTu-RnlR4ko_LUltzK57bkqS1JB1naKsr3TysUlkO4pBbj8VneUtHxbjplvjxzTkWp7lNh1j9ayjhl_VQKPzldnQkopzt4SBKNh8WA9QlMljb6f6b5AwZVvMo</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Clark, Martyn P.</creator><creator>Rupp, David E.</creator><creator>Woods, Ross A.</creator><creator>Zheng, Xiaogu</creator><creator>Ibbitt, Richard P.</creator><creator>Slater, Andrew G.</creator><creator>Schmidt, Jochen</creator><creator>Uddstrom, Michael J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20081001</creationdate><title>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</title><author>Clark, Martyn P. ; Rupp, David E. ; Woods, Ross A. ; Zheng, Xiaogu ; Ibbitt, Richard P. ; Slater, Andrew G. ; Schmidt, Jochen ; Uddstrom, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Assimilation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ensemble</topic><topic>ensemble Kalman filter</topic><topic>Exact sciences and technology</topic><topic>hydrologic data</topic><topic>hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>stream flow</topic><topic>Streamflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Martyn P.</creatorcontrib><creatorcontrib>Rupp, David E.</creatorcontrib><creatorcontrib>Woods, Ross A.</creatorcontrib><creatorcontrib>Zheng, Xiaogu</creatorcontrib><creatorcontrib>Ibbitt, Richard P.</creatorcontrib><creatorcontrib>Slater, Andrew G.</creatorcontrib><creatorcontrib>Schmidt, Jochen</creatorcontrib><creatorcontrib>Uddstrom, Michael J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Martyn P.</au><au>Rupp, David E.</au><au>Woods, Ross A.</au><au>Zheng, Xiaogu</au><au>Ibbitt, Richard P.</au><au>Slater, Andrew G.</au><au>Schmidt, Jochen</au><au>Uddstrom, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</atitle><jtitle>Advances in water resources</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>31</volume><issue>10</issue><spage>1309</spage><epage>1324</epage><pages>1309-1324</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2008.06.005</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in water resources, 2008-10, Vol.31 (10), p.1309-1324 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_miscellaneous_19316115 |
source | Access via ScienceDirect (Elsevier) |
subjects | Assimilation Earth sciences Earth, ocean, space Ensemble ensemble Kalman filter Exact sciences and technology hydrologic data hydrologic models Hydrology Hydrology. Hydrogeology mathematical models stream flow Streamflow |
title | Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20data%20assimilation%20with%20the%20ensemble%20Kalman%20filter:%20Use%20of%20streamflow%20observations%20to%20update%20states%20in%20a%20distributed%20hydrological%20model&rft.jtitle=Advances%20in%20water%20resources&rft.au=Clark,%20Martyn%20P.&rft.date=2008-10-01&rft.volume=31&rft.issue=10&rft.spage=1309&rft.epage=1324&rft.pages=1309-1324&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2008.06.005&rft_dat=%3Cproquest_cross%3E19316115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19313148&rft_id=info:pmid/&rft_els_id=S0309170808001012&rfr_iscdi=true |