Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model

This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2008-10, Vol.31 (10), p.1309-1324
Hauptverfasser: Clark, Martyn P., Rupp, David E., Woods, Ross A., Zheng, Xiaogu, Ibbitt, Richard P., Slater, Andrew G., Schmidt, Jochen, Uddstrom, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1324
container_issue 10
container_start_page 1309
container_title Advances in water resources
container_volume 31
creator Clark, Martyn P.
Rupp, David E.
Woods, Ross A.
Zheng, Xiaogu
Ibbitt, Richard P.
Slater, Andrew G.
Schmidt, Jochen
Uddstrom, Michael J.
description This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.
doi_str_mv 10.1016/j.advwatres.2008.06.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19316115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170808001012</els_id><sourcerecordid>19316115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEEkPhGeoN7BLsOIkTdlUFtKISC5i15Z_rjkdOPPh6ZtTn4IXxdKqKHUjW9eY75x7dU1WXjDaMsuHjtlH2cFQ5ATYtpWNDh4bS_kW1YqNo62noxctqRTmdaibo-Lp6g7ilBexEu6p-3zzYFEO890YFYlVWRCH62QeVfVzI0ecNyRsgsCDMOgD5psKsFuJ8yJA-kTUCiY5g2a9mF-KRRI2QDo9yJDmS_a7YQiHKROIXooj1hfd6n8GSzd8B5mghvK1eORUQ3j39F9X6y-ef1zf13fevt9dXd7XpOMu1EBpGVR4XXFgzcA2sH_XkxnbsWg3WONdPugfVt6bXdADKXDf2RnS2pZryi-rD2XeX4q89YJazRwMhqAXiHiWbOBsY6_8L5KwbCyjOoEkRMYGTu-RnlR4ko_LUltzK57bkqS1JB1naKsr3TysUlkO4pBbj8VneUtHxbjplvjxzTkWp7lNh1j9ayjhl_VQKPzldnQkopzt4SBKNh8WA9QlMljb6f6b5AwZVvMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19313148</pqid></control><display><type>article</type><title>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Clark, Martyn P. ; Rupp, David E. ; Woods, Ross A. ; Zheng, Xiaogu ; Ibbitt, Richard P. ; Slater, Andrew G. ; Schmidt, Jochen ; Uddstrom, Michael J.</creator><creatorcontrib>Clark, Martyn P. ; Rupp, David E. ; Woods, Ross A. ; Zheng, Xiaogu ; Ibbitt, Richard P. ; Slater, Andrew G. ; Schmidt, Jochen ; Uddstrom, Michael J.</creatorcontrib><description>This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2008.06.005</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Assimilation ; Earth sciences ; Earth, ocean, space ; Ensemble ; ensemble Kalman filter ; Exact sciences and technology ; hydrologic data ; hydrologic models ; Hydrology ; Hydrology. Hydrogeology ; mathematical models ; stream flow ; Streamflow</subject><ispartof>Advances in water resources, 2008-10, Vol.31 (10), p.1309-1324</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</citedby><cites>FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2008.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20743490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clark, Martyn P.</creatorcontrib><creatorcontrib>Rupp, David E.</creatorcontrib><creatorcontrib>Woods, Ross A.</creatorcontrib><creatorcontrib>Zheng, Xiaogu</creatorcontrib><creatorcontrib>Ibbitt, Richard P.</creatorcontrib><creatorcontrib>Slater, Andrew G.</creatorcontrib><creatorcontrib>Schmidt, Jochen</creatorcontrib><creatorcontrib>Uddstrom, Michael J.</creatorcontrib><title>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</title><title>Advances in water resources</title><description>This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.</description><subject>Assimilation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ensemble</subject><subject>ensemble Kalman filter</subject><subject>Exact sciences and technology</subject><subject>hydrologic data</subject><subject>hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>stream flow</subject><subject>Streamflow</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSMEEkPhGeoN7BLsOIkTdlUFtKISC5i15Z_rjkdOPPh6ZtTn4IXxdKqKHUjW9eY75x7dU1WXjDaMsuHjtlH2cFQ5ATYtpWNDh4bS_kW1YqNo62noxctqRTmdaibo-Lp6g7ilBexEu6p-3zzYFEO890YFYlVWRCH62QeVfVzI0ecNyRsgsCDMOgD5psKsFuJ8yJA-kTUCiY5g2a9mF-KRRI2QDo9yJDmS_a7YQiHKROIXooj1hfd6n8GSzd8B5mghvK1eORUQ3j39F9X6y-ef1zf13fevt9dXd7XpOMu1EBpGVR4XXFgzcA2sH_XkxnbsWg3WONdPugfVt6bXdADKXDf2RnS2pZryi-rD2XeX4q89YJazRwMhqAXiHiWbOBsY6_8L5KwbCyjOoEkRMYGTu-RnlR4ko_LUltzK57bkqS1JB1naKsr3TysUlkO4pBbj8VneUtHxbjplvjxzTkWp7lNh1j9ayjhl_VQKPzldnQkopzt4SBKNh8WA9QlMljb6f6b5AwZVvMo</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Clark, Martyn P.</creator><creator>Rupp, David E.</creator><creator>Woods, Ross A.</creator><creator>Zheng, Xiaogu</creator><creator>Ibbitt, Richard P.</creator><creator>Slater, Andrew G.</creator><creator>Schmidt, Jochen</creator><creator>Uddstrom, Michael J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20081001</creationdate><title>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</title><author>Clark, Martyn P. ; Rupp, David E. ; Woods, Ross A. ; Zheng, Xiaogu ; Ibbitt, Richard P. ; Slater, Andrew G. ; Schmidt, Jochen ; Uddstrom, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-77be8ae8a3737dc63be158b9f82842bedcff59b5ea52c5b06e01f485c74d20b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Assimilation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ensemble</topic><topic>ensemble Kalman filter</topic><topic>Exact sciences and technology</topic><topic>hydrologic data</topic><topic>hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>stream flow</topic><topic>Streamflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Martyn P.</creatorcontrib><creatorcontrib>Rupp, David E.</creatorcontrib><creatorcontrib>Woods, Ross A.</creatorcontrib><creatorcontrib>Zheng, Xiaogu</creatorcontrib><creatorcontrib>Ibbitt, Richard P.</creatorcontrib><creatorcontrib>Slater, Andrew G.</creatorcontrib><creatorcontrib>Schmidt, Jochen</creatorcontrib><creatorcontrib>Uddstrom, Michael J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Martyn P.</au><au>Rupp, David E.</au><au>Woods, Ross A.</au><au>Zheng, Xiaogu</au><au>Ibbitt, Richard P.</au><au>Slater, Andrew G.</au><au>Schmidt, Jochen</au><au>Uddstrom, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model</atitle><jtitle>Advances in water resources</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>31</volume><issue>10</issue><spage>1309</spage><epage>1324</epage><pages>1309-1324</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2008.06.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2008-10, Vol.31 (10), p.1309-1324
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_19316115
source Access via ScienceDirect (Elsevier)
subjects Assimilation
Earth sciences
Earth, ocean, space
Ensemble
ensemble Kalman filter
Exact sciences and technology
hydrologic data
hydrologic models
Hydrology
Hydrology. Hydrogeology
mathematical models
stream flow
Streamflow
title Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20data%20assimilation%20with%20the%20ensemble%20Kalman%20filter:%20Use%20of%20streamflow%20observations%20to%20update%20states%20in%20a%20distributed%20hydrological%20model&rft.jtitle=Advances%20in%20water%20resources&rft.au=Clark,%20Martyn%20P.&rft.date=2008-10-01&rft.volume=31&rft.issue=10&rft.spage=1309&rft.epage=1324&rft.pages=1309-1324&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2008.06.005&rft_dat=%3Cproquest_cross%3E19316115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19313148&rft_id=info:pmid/&rft_els_id=S0309170808001012&rfr_iscdi=true