An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding

Key message The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2017-11, Vol.130 (11), p.2327-2343
Hauptverfasser: He, Jianbo, Meng, Shan, Zhao, Tuanjie, Xing, Guangnan, Yang, Shouping, Li, Yan, Guan, Rongzhan, Lu, Jiangjie, Wang, Yufeng, Xia, Qiuju, Yang, Bing, Gai, Junyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2343
container_issue 11
container_start_page 2327
container_title Theoretical and applied genetics
container_volume 130
creator He, Jianbo
Meng, Shan
Zhao, Tuanjie
Xing, Guangnan
Yang, Shouping
Li, Yan
Guan, Rongzhan
Lu, Jiangjie
Wang, Yufeng
Xia, Qiuju
Yang, Bing
Gai, Junyi
description Key message The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was used for genetic characterization, candidate gene prediction, and genomic selection for optimal crosses in the germplasm population.
doi_str_mv 10.1007/s00122-017-2962-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1931245169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A509638394</galeid><sourcerecordid>A509638394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-462561ef291a3509ab354faa1ec66f57b76605db03eb4bd28ba8d6eb5f717d223</originalsourceid><addsrcrecordid>eNp1kktv1TAQhSMEopfCD2CDLLGBRYofsZMsryoKlSoh8VhbTjyOXCV28CSF_vs6ui1wEcgLSzPfGc3RnKJ4yegZo7R-h5QyzkvK6pK3ipfto2LHKsFLziv-uNhRWtFS1pKfFM8QrymlXFLxtDjhTcMbSdWuwH0gPoR4YxZ_A2ROsQe7JiDRkQFCnKD84S0Qgxh7n6EYiAlmvEWPxPkFCS6r9YAkNwZI0zwanMgc53V8oC3JxbCQLgFYH4bnxRNnRoQX9_9p8e3i_dfzj-XVpw-X5_ursq9qsZSV4lIxcLxlRkjamk7IyhnDoFfKybqrlaLSdlRAV3WWN51prIJOuprVlnNxWrw5zM2uvq-Ai5489jDmZSCuqFkrGK8kU21GX_-FXsc1ZZ8bJWlDMyR_U4MZQfvg4pJMvw3V-7ygEo1oq0yd_YPKz8Lk-xjA-Vw_Erw9EmRmgZ_LYFZEffnl8zHLDmyfImICp-fkJ5NuNaN6C4U-hELnUOgtFHoz9-re3NpNYH8pHlKQAX4AMLdCvuIf7v879Q6xNMCv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950801695</pqid></control><display><type>article</type><title>An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>He, Jianbo ; Meng, Shan ; Zhao, Tuanjie ; Xing, Guangnan ; Yang, Shouping ; Li, Yan ; Guan, Rongzhan ; Lu, Jiangjie ; Wang, Yufeng ; Xia, Qiuju ; Yang, Bing ; Gai, Junyi</creator><creatorcontrib>He, Jianbo ; Meng, Shan ; Zhao, Tuanjie ; Xing, Guangnan ; Yang, Shouping ; Li, Yan ; Guan, Rongzhan ; Lu, Jiangjie ; Wang, Yufeng ; Xia, Qiuju ; Yang, Bing ; Gai, Junyi</creatorcontrib><description>Key message The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was used for genetic characterization, candidate gene prediction, and genomic selection for optimal crosses in the germplasm population.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-2962-9</identifier><identifier>PMID: 28828506</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; Association analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Computer Simulation ; Constitution ; Genetic aspects ; Genetic Association Studies - methods ; Genetic Markers ; Genetics, Population ; Genome-wide association studies ; Genomes ; Genotype &amp; phenotype ; Germplasm ; Glycine max - genetics ; Growth ; Haplotypes ; Heritability ; Innovations ; Life Sciences ; Linkage Disequilibrium ; Models, Genetic ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism, Single Nucleotide ; Population ; Population genetics ; Population studies ; Power efficiency ; Quantitative Trait Loci ; Seeds ; Selection, Genetic ; Single-nucleotide polymorphism ; Soybeans</subject><ispartof>Theoretical and applied genetics, 2017-11, Vol.130 (11), p.2327-2343</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-462561ef291a3509ab354faa1ec66f57b76605db03eb4bd28ba8d6eb5f717d223</citedby><cites>FETCH-LOGICAL-c473t-462561ef291a3509ab354faa1ec66f57b76605db03eb4bd28ba8d6eb5f717d223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-2962-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-2962-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28828506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Jianbo</creatorcontrib><creatorcontrib>Meng, Shan</creatorcontrib><creatorcontrib>Zhao, Tuanjie</creatorcontrib><creatorcontrib>Xing, Guangnan</creatorcontrib><creatorcontrib>Yang, Shouping</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Guan, Rongzhan</creatorcontrib><creatorcontrib>Lu, Jiangjie</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Xia, Qiuju</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Gai, Junyi</creatorcontrib><title>An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was used for genetic characterization, candidate gene prediction, and genomic selection for optimal crosses in the germplasm population.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Association analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Computer Simulation</subject><subject>Constitution</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies - methods</subject><subject>Genetic Markers</subject><subject>Genetics, Population</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Germplasm</subject><subject>Glycine max - genetics</subject><subject>Growth</subject><subject>Haplotypes</subject><subject>Heritability</subject><subject>Innovations</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Models, Genetic</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Power efficiency</subject><subject>Quantitative Trait Loci</subject><subject>Seeds</subject><subject>Selection, Genetic</subject><subject>Single-nucleotide polymorphism</subject><subject>Soybeans</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kktv1TAQhSMEopfCD2CDLLGBRYofsZMsryoKlSoh8VhbTjyOXCV28CSF_vs6ui1wEcgLSzPfGc3RnKJ4yegZo7R-h5QyzkvK6pK3ipfto2LHKsFLziv-uNhRWtFS1pKfFM8QrymlXFLxtDjhTcMbSdWuwH0gPoR4YxZ_A2ROsQe7JiDRkQFCnKD84S0Qgxh7n6EYiAlmvEWPxPkFCS6r9YAkNwZI0zwanMgc53V8oC3JxbCQLgFYH4bnxRNnRoQX9_9p8e3i_dfzj-XVpw-X5_ursq9qsZSV4lIxcLxlRkjamk7IyhnDoFfKybqrlaLSdlRAV3WWN51prIJOuprVlnNxWrw5zM2uvq-Ai5489jDmZSCuqFkrGK8kU21GX_-FXsc1ZZ8bJWlDMyR_U4MZQfvg4pJMvw3V-7ygEo1oq0yd_YPKz8Lk-xjA-Vw_Erw9EmRmgZ_LYFZEffnl8zHLDmyfImICp-fkJ5NuNaN6C4U-hELnUOgtFHoz9-re3NpNYH8pHlKQAX4AMLdCvuIf7v879Q6xNMCv</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>He, Jianbo</creator><creator>Meng, Shan</creator><creator>Zhao, Tuanjie</creator><creator>Xing, Guangnan</creator><creator>Yang, Shouping</creator><creator>Li, Yan</creator><creator>Guan, Rongzhan</creator><creator>Lu, Jiangjie</creator><creator>Wang, Yufeng</creator><creator>Xia, Qiuju</creator><creator>Yang, Bing</creator><creator>Gai, Junyi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding</title><author>He, Jianbo ; Meng, Shan ; Zhao, Tuanjie ; Xing, Guangnan ; Yang, Shouping ; Li, Yan ; Guan, Rongzhan ; Lu, Jiangjie ; Wang, Yufeng ; Xia, Qiuju ; Yang, Bing ; Gai, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-462561ef291a3509ab354faa1ec66f57b76605db03eb4bd28ba8d6eb5f717d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Association analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Computer Simulation</topic><topic>Constitution</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies - methods</topic><topic>Genetic Markers</topic><topic>Genetics, Population</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Germplasm</topic><topic>Glycine max - genetics</topic><topic>Growth</topic><topic>Haplotypes</topic><topic>Heritability</topic><topic>Innovations</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Models, Genetic</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Power efficiency</topic><topic>Quantitative Trait Loci</topic><topic>Seeds</topic><topic>Selection, Genetic</topic><topic>Single-nucleotide polymorphism</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jianbo</creatorcontrib><creatorcontrib>Meng, Shan</creatorcontrib><creatorcontrib>Zhao, Tuanjie</creatorcontrib><creatorcontrib>Xing, Guangnan</creatorcontrib><creatorcontrib>Yang, Shouping</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Guan, Rongzhan</creatorcontrib><creatorcontrib>Lu, Jiangjie</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Xia, Qiuju</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Gai, Junyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jianbo</au><au>Meng, Shan</au><au>Zhao, Tuanjie</au><au>Xing, Guangnan</au><au>Yang, Shouping</au><au>Li, Yan</au><au>Guan, Rongzhan</au><au>Lu, Jiangjie</au><au>Wang, Yufeng</au><au>Xia, Qiuju</au><au>Yang, Bing</au><au>Gai, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>130</volume><issue>11</issue><spage>2327</spage><epage>2343</epage><pages>2327-2343</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was used for genetic characterization, candidate gene prediction, and genomic selection for optimal crosses in the germplasm population.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28828506</pmid><doi>10.1007/s00122-017-2962-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2017-11, Vol.130 (11), p.2327-2343
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_1931245169
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
Association analysis
Biochemistry
Biomedical and Life Sciences
Biotechnology
Computer Simulation
Constitution
Genetic aspects
Genetic Association Studies - methods
Genetic Markers
Genetics, Population
Genome-wide association studies
Genomes
Genotype & phenotype
Germplasm
Glycine max - genetics
Growth
Haplotypes
Heritability
Innovations
Life Sciences
Linkage Disequilibrium
Models, Genetic
Original Article
Phenotype
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Polymorphism, Single Nucleotide
Population
Population genetics
Population studies
Power efficiency
Quantitative Trait Loci
Seeds
Selection, Genetic
Single-nucleotide polymorphism
Soybeans
title An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20innovative%20procedure%20of%20genome-wide%20association%20analysis%20fits%20studies%20on%20germplasm%20population%20and%20plant%20breeding&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=He,%20Jianbo&rft.date=2017-11-01&rft.volume=130&rft.issue=11&rft.spage=2327&rft.epage=2343&rft.pages=2327-2343&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-2962-9&rft_dat=%3Cgale_proqu%3EA509638394%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950801695&rft_id=info:pmid/28828506&rft_galeid=A509638394&rfr_iscdi=true