Bridging Hydride at Reduced H‑Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry

[FeFe]-Hydrogenases contain a H2-converting cofactor (H-cluster) in which a canonical [4Fe–4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN–) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-09, Vol.139 (35), p.12157-12160
Hauptverfasser: Mebs, Stefan, Senger, Moritz, Duan, Jifu, Wittkamp, Florian, Apfel, Ulf-Peter, Happe, Thomas, Winkler, Martin, Stripp, Sven T, Haumann, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12160
container_issue 35
container_start_page 12157
container_title Journal of the American Chemical Society
container_volume 139
creator Mebs, Stefan
Senger, Moritz
Duan, Jifu
Wittkamp, Florian
Apfel, Ulf-Peter
Happe, Thomas
Winkler, Martin
Stripp, Sven T
Haumann, Michael
description [FeFe]-Hydrogenases contain a H2-converting cofactor (H-cluster) in which a canonical [4Fe–4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN–) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding may result in alternative rotamer structures of the diiron site in a single (Hred) or double (Hsred) reduced H-cluster species. We employed infrared spectro-electrochemistry and site-selective isotope editing to monitor the CO/CN– stretching vibrations in [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. Density functional theory calculations yielded vibrational modes of the diatomic ligands for conceivable H-cluster structures. Correlation analysis of experimental and computational IR spectra has facilitated an assignment of Hred and Hsred to structures with a bridging hydride at the diiron site. Pronounced ligand rotation during μH binding seems to exclude Hred and Hsred as catalytic intermediates. Only states with a conservative H-cluster geometry featuring a μCO ligand are likely involved in rapid H2 turnover.
doi_str_mv 10.1021/jacs.7b07548
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1931245067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931245067</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-ab1e5048bcc7104272a4006bbb3c6b76ea62ffa03b80f3993863a04848025b783</originalsourceid><addsrcrecordid>eNptUbtOwzAUtRAISmFjRh4ZmmI7L3eEqqWVKiEKTAhFtnNTUqVJsB2kbHwC_CJfgqMWWJh8fXUeOvcgdEbJkBJGL9dCmWEsSRwGfA_1aMiIF1IW7aMeIYR5MY_8I3RszNp9A8bpITpinLOQU9JDH9c6T1d5ucKzNnUjYGHxEtJGQYpnX--f46IxFjS-r0HlYHBe4qcpTOHZ6wjVCkph3HoJbyAKx5EtnpeZFtrNHcfqyqiqbgd4bipb1YAnaW6d4QCLMsV3jShts8HjF9jkxur2BB1kojBwunv76HE6eRjPvMXtzXx8tfCEHzHrCUkhJAGXSsXUxYqZCAiJpJS-imQcgYhYlgniS04yfzTy3RWEwwecsFDG3O-ji61uravXBoxNnL-CohAlVI1J6MinLAhJFDvoYAtVLovRkCW1zjdCtwklSddB0nWQ7Dpw8POdciM3kP6Cf47-Z92x1lWjSxf0f61vv56RTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931245067</pqid></control><display><type>article</type><title>Bridging Hydride at Reduced H‑Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mebs, Stefan ; Senger, Moritz ; Duan, Jifu ; Wittkamp, Florian ; Apfel, Ulf-Peter ; Happe, Thomas ; Winkler, Martin ; Stripp, Sven T ; Haumann, Michael</creator><creatorcontrib>Mebs, Stefan ; Senger, Moritz ; Duan, Jifu ; Wittkamp, Florian ; Apfel, Ulf-Peter ; Happe, Thomas ; Winkler, Martin ; Stripp, Sven T ; Haumann, Michael</creatorcontrib><description>[FeFe]-Hydrogenases contain a H2-converting cofactor (H-cluster) in which a canonical [4Fe–4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN–) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding may result in alternative rotamer structures of the diiron site in a single (Hred) or double (Hsred) reduced H-cluster species. We employed infrared spectro-electrochemistry and site-selective isotope editing to monitor the CO/CN– stretching vibrations in [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. Density functional theory calculations yielded vibrational modes of the diatomic ligands for conceivable H-cluster structures. Correlation analysis of experimental and computational IR spectra has facilitated an assignment of Hred and Hsred to structures with a bridging hydride at the diiron site. Pronounced ligand rotation during μH binding seems to exclude Hred and Hsred as catalytic intermediates. Only states with a conservative H-cluster geometry featuring a μCO ligand are likely involved in rapid H2 turnover.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b07548</identifier><identifier>PMID: 28825810</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Hydrogen - chemistry ; Hydrogenase - chemistry ; Iron - chemistry ; Isotopes - chemistry ; Molecular Structure ; Quantum Theory ; Spectrophotometry, Infrared - methods</subject><ispartof>Journal of the American Chemical Society, 2017-09, Vol.139 (35), p.12157-12160</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-ab1e5048bcc7104272a4006bbb3c6b76ea62ffa03b80f3993863a04848025b783</citedby><cites>FETCH-LOGICAL-a362t-ab1e5048bcc7104272a4006bbb3c6b76ea62ffa03b80f3993863a04848025b783</cites><orcidid>0000-0002-8412-0258 ; 0000-0001-7008-1764 ; 0000-0003-2877-3577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b07548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b07548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28825810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mebs, Stefan</creatorcontrib><creatorcontrib>Senger, Moritz</creatorcontrib><creatorcontrib>Duan, Jifu</creatorcontrib><creatorcontrib>Wittkamp, Florian</creatorcontrib><creatorcontrib>Apfel, Ulf-Peter</creatorcontrib><creatorcontrib>Happe, Thomas</creatorcontrib><creatorcontrib>Winkler, Martin</creatorcontrib><creatorcontrib>Stripp, Sven T</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><title>Bridging Hydride at Reduced H‑Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>[FeFe]-Hydrogenases contain a H2-converting cofactor (H-cluster) in which a canonical [4Fe–4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN–) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding may result in alternative rotamer structures of the diiron site in a single (Hred) or double (Hsred) reduced H-cluster species. We employed infrared spectro-electrochemistry and site-selective isotope editing to monitor the CO/CN– stretching vibrations in [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. Density functional theory calculations yielded vibrational modes of the diatomic ligands for conceivable H-cluster structures. Correlation analysis of experimental and computational IR spectra has facilitated an assignment of Hred and Hsred to structures with a bridging hydride at the diiron site. Pronounced ligand rotation during μH binding seems to exclude Hred and Hsred as catalytic intermediates. Only states with a conservative H-cluster geometry featuring a μCO ligand are likely involved in rapid H2 turnover.</description><subject>Hydrogen - chemistry</subject><subject>Hydrogenase - chemistry</subject><subject>Iron - chemistry</subject><subject>Isotopes - chemistry</subject><subject>Molecular Structure</subject><subject>Quantum Theory</subject><subject>Spectrophotometry, Infrared - methods</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptUbtOwzAUtRAISmFjRh4ZmmI7L3eEqqWVKiEKTAhFtnNTUqVJsB2kbHwC_CJfgqMWWJh8fXUeOvcgdEbJkBJGL9dCmWEsSRwGfA_1aMiIF1IW7aMeIYR5MY_8I3RszNp9A8bpITpinLOQU9JDH9c6T1d5ucKzNnUjYGHxEtJGQYpnX--f46IxFjS-r0HlYHBe4qcpTOHZ6wjVCkph3HoJbyAKx5EtnpeZFtrNHcfqyqiqbgd4bipb1YAnaW6d4QCLMsV3jShts8HjF9jkxur2BB1kojBwunv76HE6eRjPvMXtzXx8tfCEHzHrCUkhJAGXSsXUxYqZCAiJpJS-imQcgYhYlgniS04yfzTy3RWEwwecsFDG3O-ji61uravXBoxNnL-CohAlVI1J6MinLAhJFDvoYAtVLovRkCW1zjdCtwklSddB0nWQ7Dpw8POdciM3kP6Cf47-Z92x1lWjSxf0f61vv56RTw</recordid><startdate>20170906</startdate><enddate>20170906</enddate><creator>Mebs, Stefan</creator><creator>Senger, Moritz</creator><creator>Duan, Jifu</creator><creator>Wittkamp, Florian</creator><creator>Apfel, Ulf-Peter</creator><creator>Happe, Thomas</creator><creator>Winkler, Martin</creator><creator>Stripp, Sven T</creator><creator>Haumann, Michael</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8412-0258</orcidid><orcidid>https://orcid.org/0000-0001-7008-1764</orcidid><orcidid>https://orcid.org/0000-0003-2877-3577</orcidid></search><sort><creationdate>20170906</creationdate><title>Bridging Hydride at Reduced H‑Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry</title><author>Mebs, Stefan ; Senger, Moritz ; Duan, Jifu ; Wittkamp, Florian ; Apfel, Ulf-Peter ; Happe, Thomas ; Winkler, Martin ; Stripp, Sven T ; Haumann, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-ab1e5048bcc7104272a4006bbb3c6b76ea62ffa03b80f3993863a04848025b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Hydrogen - chemistry</topic><topic>Hydrogenase - chemistry</topic><topic>Iron - chemistry</topic><topic>Isotopes - chemistry</topic><topic>Molecular Structure</topic><topic>Quantum Theory</topic><topic>Spectrophotometry, Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mebs, Stefan</creatorcontrib><creatorcontrib>Senger, Moritz</creatorcontrib><creatorcontrib>Duan, Jifu</creatorcontrib><creatorcontrib>Wittkamp, Florian</creatorcontrib><creatorcontrib>Apfel, Ulf-Peter</creatorcontrib><creatorcontrib>Happe, Thomas</creatorcontrib><creatorcontrib>Winkler, Martin</creatorcontrib><creatorcontrib>Stripp, Sven T</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mebs, Stefan</au><au>Senger, Moritz</au><au>Duan, Jifu</au><au>Wittkamp, Florian</au><au>Apfel, Ulf-Peter</au><au>Happe, Thomas</au><au>Winkler, Martin</au><au>Stripp, Sven T</au><au>Haumann, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging Hydride at Reduced H‑Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-09-06</date><risdate>2017</risdate><volume>139</volume><issue>35</issue><spage>12157</spage><epage>12160</epage><pages>12157-12160</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>[FeFe]-Hydrogenases contain a H2-converting cofactor (H-cluster) in which a canonical [4Fe–4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN–) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding may result in alternative rotamer structures of the diiron site in a single (Hred) or double (Hsred) reduced H-cluster species. We employed infrared spectro-electrochemistry and site-selective isotope editing to monitor the CO/CN– stretching vibrations in [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. Density functional theory calculations yielded vibrational modes of the diatomic ligands for conceivable H-cluster structures. Correlation analysis of experimental and computational IR spectra has facilitated an assignment of Hred and Hsred to structures with a bridging hydride at the diiron site. Pronounced ligand rotation during μH binding seems to exclude Hred and Hsred as catalytic intermediates. Only states with a conservative H-cluster geometry featuring a μCO ligand are likely involved in rapid H2 turnover.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28825810</pmid><doi>10.1021/jacs.7b07548</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8412-0258</orcidid><orcidid>https://orcid.org/0000-0001-7008-1764</orcidid><orcidid>https://orcid.org/0000-0003-2877-3577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-09, Vol.139 (35), p.12157-12160
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1931245067
source MEDLINE; ACS Publications
subjects Hydrogen - chemistry
Hydrogenase - chemistry
Iron - chemistry
Isotopes - chemistry
Molecular Structure
Quantum Theory
Spectrophotometry, Infrared - methods
title Bridging Hydride at Reduced H‑Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20Hydride%20at%20Reduced%20H%E2%80%91Cluster%20Species%20in%20%5BFeFe%5D-Hydrogenases%20Revealed%20by%20Infrared%20Spectroscopy,%20Isotope%20Editing,%20and%20Quantum%20Chemistry&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Mebs,%20Stefan&rft.date=2017-09-06&rft.volume=139&rft.issue=35&rft.spage=12157&rft.epage=12160&rft.pages=12157-12160&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b07548&rft_dat=%3Cproquest_cross%3E1931245067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931245067&rft_id=info:pmid/28825810&rfr_iscdi=true