Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants
C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C–C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid re...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2005-02, Vol.346 (1), p.241-251 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 1 |
container_start_page | 241 |
container_title | Journal of molecular biology |
container_volume | 346 |
creator | Li, Chen Montgomery, Mark G. Mohammed, Fiyaz Li, Jian-Jun Wood, Stephen P. Bugg, Timothy D.H. |
description | C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from
Escherichia coli catalyses the hydrolytic C–C cleavage of the
meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of
E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10
4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced
K
M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500
s
−1) interconversion of dienol (317
nm) to dienolate (394
nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110. |
doi_str_mv | 10.1016/j.jmb.2004.11.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19310762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283604014809</els_id><sourcerecordid>17495398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</originalsourceid><addsrcrecordid>eNqNkc2O0zAURi0EYjoDD8AGecUu4V47cRNYjaJhipiKxcDacq9vVFf5KXaK1A3iHXhDnoRUrcQOsbJkne8s7hHiFUKOgObtLt_1m1wBFDliDlo9EQuEqs4qo6unYgGgVKYqba7EdUo7ACh1UT0XV1gao-sCF-JH4ybXHadAcs20dUNIvRxb2fz--auRq6OPY-cSy_V238g2jr28S7TlGGgbnKSxC-_kpzDwSXA7zKYU0mm_CkkZLd3g5SNHRJCPYeLMh8g0sZfrw-SGKb0Qz1rXJX55eW_E1w93X5pV9vD5_mNz-5BRgXrK9JK8Ut4YKKlC490GTInalK1bsgYwihRz5RCZVKk1caH9_K9KrDeelL4Rb87efRy_HThNtg-JuOvcwOMhWaw1wtL8B7gs6lLX1QziGaQ4phS5tfsYehePFsGe6tidnevYUx2LaOc68-b1RX7Y9Oz_Li45ZuD9GeD5Ft8DR5so8EB8vpv1Y_iH_g-ibJ7j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17495398</pqid></control><display><type>article</type><title>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Chen ; Montgomery, Mark G. ; Mohammed, Fiyaz ; Li, Jian-Jun ; Wood, Stephen P. ; Bugg, Timothy D.H.</creator><creatorcontrib>Li, Chen ; Montgomery, Mark G. ; Mohammed, Fiyaz ; Li, Jian-Jun ; Wood, Stephen P. ; Bugg, Timothy D.H.</creatorcontrib><description>C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from
Escherichia coli catalyses the hydrolytic C–C cleavage of the
meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of
E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10
4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced
K
M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500
s
−1) interconversion of dienol (317
nm) to dienolate (394
nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2004.11.032</identifier><identifier>PMID: 15663941</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Binding Sites ; Catalysis ; C–C hydrolase ; Enzyme Stability ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; general base mechanism ; Histidine - genetics ; Histidine - metabolism ; Hydrogen-Ion Concentration ; Hydrolases - chemistry ; Hydrolases - genetics ; Hydrolases - metabolism ; Kinetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed - genetics ; Sequence Alignment ; Serine - genetics ; Serine - metabolism ; serine catalytic triad ; αβ-hydrolase</subject><ispartof>Journal of molecular biology, 2005-02, Vol.346 (1), p.241-251</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</citedby><cites>FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283604014809$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15663941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Montgomery, Mark G.</creatorcontrib><creatorcontrib>Mohammed, Fiyaz</creatorcontrib><creatorcontrib>Li, Jian-Jun</creatorcontrib><creatorcontrib>Wood, Stephen P.</creatorcontrib><creatorcontrib>Bugg, Timothy D.H.</creatorcontrib><title>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from
Escherichia coli catalyses the hydrolytic C–C cleavage of the
meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of
E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10
4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced
K
M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500
s
−1) interconversion of dienol (317
nm) to dienolate (394
nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>C–C hydrolase</subject><subject>Enzyme Stability</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>general base mechanism</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - genetics</subject><subject>Hydrolases - metabolism</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed - genetics</subject><subject>Sequence Alignment</subject><subject>Serine - genetics</subject><subject>Serine - metabolism</subject><subject>serine catalytic triad</subject><subject>αβ-hydrolase</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAURi0EYjoDD8AGecUu4V47cRNYjaJhipiKxcDacq9vVFf5KXaK1A3iHXhDnoRUrcQOsbJkne8s7hHiFUKOgObtLt_1m1wBFDliDlo9EQuEqs4qo6unYgGgVKYqba7EdUo7ACh1UT0XV1gao-sCF-JH4ybXHadAcs20dUNIvRxb2fz--auRq6OPY-cSy_V238g2jr28S7TlGGgbnKSxC-_kpzDwSXA7zKYU0mm_CkkZLd3g5SNHRJCPYeLMh8g0sZfrw-SGKb0Qz1rXJX55eW_E1w93X5pV9vD5_mNz-5BRgXrK9JK8Ut4YKKlC490GTInalK1bsgYwihRz5RCZVKk1caH9_K9KrDeelL4Rb87efRy_HThNtg-JuOvcwOMhWaw1wtL8B7gs6lLX1QziGaQ4phS5tfsYehePFsGe6tidnevYUx2LaOc68-b1RX7Y9Oz_Li45ZuD9GeD5Ft8DR5so8EB8vpv1Y_iH_g-ibJ7j</recordid><startdate>20050211</startdate><enddate>20050211</enddate><creator>Li, Chen</creator><creator>Montgomery, Mark G.</creator><creator>Mohammed, Fiyaz</creator><creator>Li, Jian-Jun</creator><creator>Wood, Stephen P.</creator><creator>Bugg, Timothy D.H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20050211</creationdate><title>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</title><author>Li, Chen ; Montgomery, Mark G. ; Mohammed, Fiyaz ; Li, Jian-Jun ; Wood, Stephen P. ; Bugg, Timothy D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>C–C hydrolase</topic><topic>Enzyme Stability</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>general base mechanism</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - genetics</topic><topic>Hydrolases - metabolism</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed - genetics</topic><topic>Sequence Alignment</topic><topic>Serine - genetics</topic><topic>Serine - metabolism</topic><topic>serine catalytic triad</topic><topic>αβ-hydrolase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Montgomery, Mark G.</creatorcontrib><creatorcontrib>Mohammed, Fiyaz</creatorcontrib><creatorcontrib>Li, Jian-Jun</creatorcontrib><creatorcontrib>Wood, Stephen P.</creatorcontrib><creatorcontrib>Bugg, Timothy D.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chen</au><au>Montgomery, Mark G.</au><au>Mohammed, Fiyaz</au><au>Li, Jian-Jun</au><au>Wood, Stephen P.</au><au>Bugg, Timothy D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2005-02-11</date><risdate>2005</risdate><volume>346</volume><issue>1</issue><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from
Escherichia coli catalyses the hydrolytic C–C cleavage of the
meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of
E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10
4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced
K
M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500
s
−1) interconversion of dienol (317
nm) to dienolate (394
nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15663941</pmid><doi>10.1016/j.jmb.2004.11.032</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2005-02, Vol.346 (1), p.241-251 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_19310762 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Amino Acid Sequence Binding Sites Catalysis C–C hydrolase Enzyme Stability Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism general base mechanism Histidine - genetics Histidine - metabolism Hydrogen-Ion Concentration Hydrolases - chemistry Hydrolases - genetics Hydrolases - metabolism Kinetics Molecular Sequence Data Mutagenesis, Site-Directed - genetics Sequence Alignment Serine - genetics Serine - metabolism serine catalytic triad αβ-hydrolase |
title | Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Mechanism%20of%20C%E2%80%93C%20Hydrolase%20MhpC%20from%20Escherichia%20coli:%20Kinetic%20Analysis%20of%20His263%20and%20Ser110%20Site-directed%20Mutants&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Li,%20Chen&rft.date=2005-02-11&rft.volume=346&rft.issue=1&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2004.11.032&rft_dat=%3Cproquest_cross%3E17495398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17495398&rft_id=info:pmid/15663941&rft_els_id=S0022283604014809&rfr_iscdi=true |