Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants

C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C–C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2005-02, Vol.346 (1), p.241-251
Hauptverfasser: Li, Chen, Montgomery, Mark G., Mohammed, Fiyaz, Li, Jian-Jun, Wood, Stephen P., Bugg, Timothy D.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 241
container_title Journal of molecular biology
container_volume 346
creator Li, Chen
Montgomery, Mark G.
Mohammed, Fiyaz
Li, Jian-Jun
Wood, Stephen P.
Bugg, Timothy D.H.
description C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C–C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10 4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s −1) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.
doi_str_mv 10.1016/j.jmb.2004.11.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19310762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283604014809</els_id><sourcerecordid>17495398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</originalsourceid><addsrcrecordid>eNqNkc2O0zAURi0EYjoDD8AGecUu4V47cRNYjaJhipiKxcDacq9vVFf5KXaK1A3iHXhDnoRUrcQOsbJkne8s7hHiFUKOgObtLt_1m1wBFDliDlo9EQuEqs4qo6unYgGgVKYqba7EdUo7ACh1UT0XV1gao-sCF-JH4ybXHadAcs20dUNIvRxb2fz--auRq6OPY-cSy_V238g2jr28S7TlGGgbnKSxC-_kpzDwSXA7zKYU0mm_CkkZLd3g5SNHRJCPYeLMh8g0sZfrw-SGKb0Qz1rXJX55eW_E1w93X5pV9vD5_mNz-5BRgXrK9JK8Ut4YKKlC490GTInalK1bsgYwihRz5RCZVKk1caH9_K9KrDeelL4Rb87efRy_HThNtg-JuOvcwOMhWaw1wtL8B7gs6lLX1QziGaQ4phS5tfsYehePFsGe6tidnevYUx2LaOc68-b1RX7Y9Oz_Li45ZuD9GeD5Ft8DR5so8EB8vpv1Y_iH_g-ibJ7j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17495398</pqid></control><display><type>article</type><title>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Chen ; Montgomery, Mark G. ; Mohammed, Fiyaz ; Li, Jian-Jun ; Wood, Stephen P. ; Bugg, Timothy D.H.</creator><creatorcontrib>Li, Chen ; Montgomery, Mark G. ; Mohammed, Fiyaz ; Li, Jian-Jun ; Wood, Stephen P. ; Bugg, Timothy D.H.</creatorcontrib><description>C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C–C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10 4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s −1) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2004.11.032</identifier><identifier>PMID: 15663941</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Binding Sites ; Catalysis ; C–C hydrolase ; Enzyme Stability ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; general base mechanism ; Histidine - genetics ; Histidine - metabolism ; Hydrogen-Ion Concentration ; Hydrolases - chemistry ; Hydrolases - genetics ; Hydrolases - metabolism ; Kinetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed - genetics ; Sequence Alignment ; Serine - genetics ; Serine - metabolism ; serine catalytic triad ; αβ-hydrolase</subject><ispartof>Journal of molecular biology, 2005-02, Vol.346 (1), p.241-251</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</citedby><cites>FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283604014809$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15663941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Montgomery, Mark G.</creatorcontrib><creatorcontrib>Mohammed, Fiyaz</creatorcontrib><creatorcontrib>Li, Jian-Jun</creatorcontrib><creatorcontrib>Wood, Stephen P.</creatorcontrib><creatorcontrib>Bugg, Timothy D.H.</creatorcontrib><title>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C–C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10 4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s −1) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>C–C hydrolase</subject><subject>Enzyme Stability</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>general base mechanism</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - genetics</subject><subject>Hydrolases - metabolism</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed - genetics</subject><subject>Sequence Alignment</subject><subject>Serine - genetics</subject><subject>Serine - metabolism</subject><subject>serine catalytic triad</subject><subject>αβ-hydrolase</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAURi0EYjoDD8AGecUu4V47cRNYjaJhipiKxcDacq9vVFf5KXaK1A3iHXhDnoRUrcQOsbJkne8s7hHiFUKOgObtLt_1m1wBFDliDlo9EQuEqs4qo6unYgGgVKYqba7EdUo7ACh1UT0XV1gao-sCF-JH4ybXHadAcs20dUNIvRxb2fz--auRq6OPY-cSy_V238g2jr28S7TlGGgbnKSxC-_kpzDwSXA7zKYU0mm_CkkZLd3g5SNHRJCPYeLMh8g0sZfrw-SGKb0Qz1rXJX55eW_E1w93X5pV9vD5_mNz-5BRgXrK9JK8Ut4YKKlC490GTInalK1bsgYwihRz5RCZVKk1caH9_K9KrDeelL4Rb87efRy_HThNtg-JuOvcwOMhWaw1wtL8B7gs6lLX1QziGaQ4phS5tfsYehePFsGe6tidnevYUx2LaOc68-b1RX7Y9Oz_Li45ZuD9GeD5Ft8DR5so8EB8vpv1Y_iH_g-ibJ7j</recordid><startdate>20050211</startdate><enddate>20050211</enddate><creator>Li, Chen</creator><creator>Montgomery, Mark G.</creator><creator>Mohammed, Fiyaz</creator><creator>Li, Jian-Jun</creator><creator>Wood, Stephen P.</creator><creator>Bugg, Timothy D.H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20050211</creationdate><title>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</title><author>Li, Chen ; Montgomery, Mark G. ; Mohammed, Fiyaz ; Li, Jian-Jun ; Wood, Stephen P. ; Bugg, Timothy D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-37cd22d6605c816dab0651365fa7e30062c2ee8a11ec2533ce43d3002519bdc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>C–C hydrolase</topic><topic>Enzyme Stability</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>general base mechanism</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - genetics</topic><topic>Hydrolases - metabolism</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed - genetics</topic><topic>Sequence Alignment</topic><topic>Serine - genetics</topic><topic>Serine - metabolism</topic><topic>serine catalytic triad</topic><topic>αβ-hydrolase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Montgomery, Mark G.</creatorcontrib><creatorcontrib>Mohammed, Fiyaz</creatorcontrib><creatorcontrib>Li, Jian-Jun</creatorcontrib><creatorcontrib>Wood, Stephen P.</creatorcontrib><creatorcontrib>Bugg, Timothy D.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chen</au><au>Montgomery, Mark G.</au><au>Mohammed, Fiyaz</au><au>Li, Jian-Jun</au><au>Wood, Stephen P.</au><au>Bugg, Timothy D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2005-02-11</date><risdate>2005</risdate><volume>346</volume><issue>1</issue><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>C–C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C–C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10 4-fold reduced catalytic efficiency, but still retain catalytic activity for C–C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C–C cleavage: H263A exhibits very slow ketonisation and C–C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C–C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K M for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s −1) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C–C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15663941</pmid><doi>10.1016/j.jmb.2004.11.032</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2005-02, Vol.346 (1), p.241-251
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_19310762
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Amino Acid Sequence
Binding Sites
Catalysis
C–C hydrolase
Enzyme Stability
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
general base mechanism
Histidine - genetics
Histidine - metabolism
Hydrogen-Ion Concentration
Hydrolases - chemistry
Hydrolases - genetics
Hydrolases - metabolism
Kinetics
Molecular Sequence Data
Mutagenesis, Site-Directed - genetics
Sequence Alignment
Serine - genetics
Serine - metabolism
serine catalytic triad
αβ-hydrolase
title Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and Ser110 Site-directed Mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Mechanism%20of%20C%E2%80%93C%20Hydrolase%20MhpC%20from%20Escherichia%20coli:%20Kinetic%20Analysis%20of%20His263%20and%20Ser110%20Site-directed%20Mutants&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Li,%20Chen&rft.date=2005-02-11&rft.volume=346&rft.issue=1&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2004.11.032&rft_dat=%3Cproquest_cross%3E17495398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17495398&rft_id=info:pmid/15663941&rft_els_id=S0022283604014809&rfr_iscdi=true