Refraction of a Gaussian seaway

Refraction of a Longuet‐Higgins Gaussian sea by random ocean currents creates persistent local variations (in the form of lumps or streaks) in average energy and wave action distributions. These variations explicitly survive averaging over wavelength and wave propagation direction. The lumps and str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2008-09, Vol.113 (C9), p.n/a
Hauptverfasser: Heller, E. J., Kaplan, L., Dahlen, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C9
container_start_page
container_title Journal of Geophysical Research. C. Oceans
container_volume 113
creator Heller, E. J.
Kaplan, L.
Dahlen, A.
description Refraction of a Longuet‐Higgins Gaussian sea by random ocean currents creates persistent local variations (in the form of lumps or streaks) in average energy and wave action distributions. These variations explicitly survive averaging over wavelength and wave propagation direction. The lumps and streaks in average local action mean that the uniform sampling assumed in the venerable Longuet‐Higgins theory does not apply. Proper handling of the nonuniform sampling results in greatly increased probability of freak wave formation. The present theory represents a synthesis of Longuet‐Higgins Gaussian seas and the refraction model of White and Fornberg, which used a non‐Gaussian nonstatistical plane wave incident seaway. Using the linearized equations for deep ocean waves, we obtain quantitative predictions for the increased probability of freak wave formation when the refractive effects are taken into account. The wave height distribution depends primarily on the “freak index,” γ, which measures the strength of refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained in the tail of this distribution even for the modest values of the freak index that are expected to occur commonly in nature. Extensive comparisons are made between the analytical description and numerical simulations.
doi_str_mv 10.1029/2008JC004748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19309637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19309637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4729-72b070ebe78dfff1817172ddc57bfa99fce15932fabab3d68b5154020c8412b43</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCo65m3d7UTxYfS9Nm-Qow3WOoVAUwUtI0wSqXTubjbn_3o6O4UlzeZff9xE-Qs4RbhGovKMAYjYGYJyJIzKgGCchpUCPyQCQiRAo5adk5P0HdI_FCQMckIvMulabVdnUQeMCHaR67X2p68BbvdHbM3LidOXtaH-H5HXy8DKehvPn9HF8Pw8141SGnObAweaWi8I5hwI5cloUJua501I6YzGWEXU613lUJCKPMWZAwQiGNGfRkFz1vcu2-Vpbv1KL0htbVbq2zdorlBHIJOIdvP4HopQxS8SO3vTUtI33rXVq2ZYL3W4Vgtptpn5v1vHLfbP2RlfdLLUp_SFDgUsUfOei3m3Kym7_7FSzNBsjQvf7IQn7VOlX9vuQ0u2nSnjEY_X2lKosmbD5-5SpLPoB7SOGLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919954687</pqid></control><display><type>article</type><title>Refraction of a Gaussian seaway</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>Alma/SFX Local Collection</source><creator>Heller, E. J. ; Kaplan, L. ; Dahlen, A.</creator><creatorcontrib>Heller, E. J. ; Kaplan, L. ; Dahlen, A.</creatorcontrib><description>Refraction of a Longuet‐Higgins Gaussian sea by random ocean currents creates persistent local variations (in the form of lumps or streaks) in average energy and wave action distributions. These variations explicitly survive averaging over wavelength and wave propagation direction. The lumps and streaks in average local action mean that the uniform sampling assumed in the venerable Longuet‐Higgins theory does not apply. Proper handling of the nonuniform sampling results in greatly increased probability of freak wave formation. The present theory represents a synthesis of Longuet‐Higgins Gaussian seas and the refraction model of White and Fornberg, which used a non‐Gaussian nonstatistical plane wave incident seaway. Using the linearized equations for deep ocean waves, we obtain quantitative predictions for the increased probability of freak wave formation when the refractive effects are taken into account. The wave height distribution depends primarily on the “freak index,” γ, which measures the strength of refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained in the tail of this distribution even for the modest values of the freak index that are expected to occur commonly in nature. Extensive comparisons are made between the analytical description and numerical simulations.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2008JC004748</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Marine ; Ocean waves</subject><ispartof>Journal of Geophysical Research. C. Oceans, 2008-09, Vol.113 (C9), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4729-72b070ebe78dfff1817172ddc57bfa99fce15932fabab3d68b5154020c8412b43</citedby><cites>FETCH-LOGICAL-a4729-72b070ebe78dfff1817172ddc57bfa99fce15932fabab3d68b5154020c8412b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JC004748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JC004748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20791878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heller, E. J.</creatorcontrib><creatorcontrib>Kaplan, L.</creatorcontrib><creatorcontrib>Dahlen, A.</creatorcontrib><title>Refraction of a Gaussian seaway</title><title>Journal of Geophysical Research. C. Oceans</title><addtitle>J. Geophys. Res</addtitle><description>Refraction of a Longuet‐Higgins Gaussian sea by random ocean currents creates persistent local variations (in the form of lumps or streaks) in average energy and wave action distributions. These variations explicitly survive averaging over wavelength and wave propagation direction. The lumps and streaks in average local action mean that the uniform sampling assumed in the venerable Longuet‐Higgins theory does not apply. Proper handling of the nonuniform sampling results in greatly increased probability of freak wave formation. The present theory represents a synthesis of Longuet‐Higgins Gaussian seas and the refraction model of White and Fornberg, which used a non‐Gaussian nonstatistical plane wave incident seaway. Using the linearized equations for deep ocean waves, we obtain quantitative predictions for the increased probability of freak wave formation when the refractive effects are taken into account. The wave height distribution depends primarily on the “freak index,” γ, which measures the strength of refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained in the tail of this distribution even for the modest values of the freak index that are expected to occur commonly in nature. Extensive comparisons are made between the analytical description and numerical simulations.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>Ocean waves</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0MFLwzAUBvAgCo65m3d7UTxYfS9Nm-Qow3WOoVAUwUtI0wSqXTubjbn_3o6O4UlzeZff9xE-Qs4RbhGovKMAYjYGYJyJIzKgGCchpUCPyQCQiRAo5adk5P0HdI_FCQMckIvMulabVdnUQeMCHaR67X2p68BbvdHbM3LidOXtaH-H5HXy8DKehvPn9HF8Pw8141SGnObAweaWi8I5hwI5cloUJua501I6YzGWEXU613lUJCKPMWZAwQiGNGfRkFz1vcu2-Vpbv1KL0htbVbq2zdorlBHIJOIdvP4HopQxS8SO3vTUtI33rXVq2ZYL3W4Vgtptpn5v1vHLfbP2RlfdLLUp_SFDgUsUfOei3m3Kym7_7FSzNBsjQvf7IQn7VOlX9vuQ0u2nSnjEY_X2lKosmbD5-5SpLPoB7SOGLg</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Heller, E. J.</creator><creator>Kaplan, L.</creator><creator>Dahlen, A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200809</creationdate><title>Refraction of a Gaussian seaway</title><author>Heller, E. J. ; Kaplan, L. ; Dahlen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4729-72b070ebe78dfff1817172ddc57bfa99fce15932fabab3d68b5154020c8412b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>Ocean waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heller, E. J.</creatorcontrib><creatorcontrib>Kaplan, L.</creatorcontrib><creatorcontrib>Dahlen, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of Geophysical Research. C. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heller, E. J.</au><au>Kaplan, L.</au><au>Dahlen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refraction of a Gaussian seaway</atitle><jtitle>Journal of Geophysical Research. C. Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-09</date><risdate>2008</risdate><volume>113</volume><issue>C9</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>Refraction of a Longuet‐Higgins Gaussian sea by random ocean currents creates persistent local variations (in the form of lumps or streaks) in average energy and wave action distributions. These variations explicitly survive averaging over wavelength and wave propagation direction. The lumps and streaks in average local action mean that the uniform sampling assumed in the venerable Longuet‐Higgins theory does not apply. Proper handling of the nonuniform sampling results in greatly increased probability of freak wave formation. The present theory represents a synthesis of Longuet‐Higgins Gaussian seas and the refraction model of White and Fornberg, which used a non‐Gaussian nonstatistical plane wave incident seaway. Using the linearized equations for deep ocean waves, we obtain quantitative predictions for the increased probability of freak wave formation when the refractive effects are taken into account. The wave height distribution depends primarily on the “freak index,” γ, which measures the strength of refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained in the tail of this distribution even for the modest values of the freak index that are expected to occur commonly in nature. Extensive comparisons are made between the analytical description and numerical simulations.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JC004748</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. C. Oceans, 2008-09, Vol.113 (C9), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_19309637
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Marine
Ocean waves
title Refraction of a Gaussian seaway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refraction%20of%20a%20Gaussian%20seaway&rft.jtitle=Journal%20of%20Geophysical%20Research.%20C.%20Oceans&rft.au=Heller,%20E.%20J.&rft.date=2008-09&rft.volume=113&rft.issue=C9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JC004748&rft_dat=%3Cproquest_cross%3E19309637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919954687&rft_id=info:pmid/&rfr_iscdi=true