Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways

The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2017-12, Vol.390 (12), p.1189-1200
Hauptverfasser: Su, Shao-Hua, Wu, Yi-Fang, Lin, Qi, Hai, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 12
container_start_page 1189
container_title Naunyn-Schmiedeberg's archives of pharmacology
container_volume 390
creator Su, Shao-Hua
Wu, Yi-Fang
Lin, Qi
Hai, Jian
description The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.
doi_str_mv 10.1007/s00210-017-1417-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930934276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930934276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</originalsourceid><addsrcrecordid>eNp1kUGL1TAUhYMozpvRH-BGAm5cTDVJ27RZOg9HB4YRZMRluU1u3svYJjVpkf41t-79TebxRhHBTS7hfuecC4eQZ5y94ow1rxNjgrOC8abgVX7UA7LhVSkKrrh4SDZ53RZcqPaEnKZ0xxiTvK4fkxPRtqLmvNqQH1vwHnrngzM0osZpDpHCLniXZvr56qauzwUXhaDgDbUwzysFnVkYnUG6X00MAySkzu9d7w7iTx8vatVkAAcXIsxIPS4xOG8HGEfIyJqT0hR8wpR1VO9jjtNUY8Q-wpBdpzBhtEtywdMxGBxov9J-CPqL8zt6c1n8_H5BJ5j332BNT8gjC0PCp_fzjNxevr3dvi-uP7y72r65LnTZiLmoUCGwtq4Uqr620NfIWZv_gLI0FkoGwKTQRkpm0RptBCul7DVU2jJdnpGXR9sphq8LprkbXdI4DOAxLKnjqmSqrEQjM_riH_QuLNHn4zIlRT6Bt2Wm-JHSMaQU0XZTdCPEteOsOxTcHQvucsHdoeBOZc3ze-elH9H8UfxuNAPiCKS88juMf0X_1_UX-Ce0ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962549183</pqid></control><display><type>article</type><title>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Su, Shao-Hua ; Wu, Yi-Fang ; Lin, Qi ; Hai, Jian</creator><creatorcontrib>Su, Shao-Hua ; Wu, Yi-Fang ; Lin, Qi ; Hai, Jian</creatorcontrib><description>The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.</description><identifier>ISSN: 0028-1298</identifier><identifier>EISSN: 1432-1912</identifier><identifier>DOI: 10.1007/s00210-017-1417-9</identifier><identifier>PMID: 28825114</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amidohydrolases - antagonists &amp; inhibitors ; Animals ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Astrocytes ; Benzamides - pharmacology ; Benzamides - therapeutic use ; Benzoxazines - pharmacology ; Benzoxazines - therapeutic use ; Biomedical and Life Sciences ; Biomedicine ; Cannabinoid Receptor Agonists - pharmacology ; Cannabinoid Receptor Agonists - therapeutic use ; Cannabinoid receptors ; Carbamates - pharmacology ; Carbamates - therapeutic use ; Cerebrovascular Disorders - drug therapy ; Cerebrovascular Disorders - physiopathology ; Classical pathway ; Cortex (frontal) ; Cyclooxygenase-2 ; Endocannabinoids - physiology ; Enzyme-linked immunosorbent assay ; Fatty acids ; Fatty-acid amide hydrolase ; Glial fibrillary acidic protein ; Hippocampus - drug effects ; Hippocampus - metabolism ; Hippocampus - pathology ; Hydrolase ; IKK protein ; IL-1β ; Immunofluorescence ; Inflammation ; Ischemia ; Kinases ; Lymphocytes B ; Macrophage Activation - drug effects ; Male ; Microglia ; Morpholines - pharmacology ; Morpholines - therapeutic use ; Naphthalenes - pharmacology ; Naphthalenes - therapeutic use ; Neuritis - drug therapy ; Neuritis - physiopathology ; Neuroprotection ; Neurosciences ; NF-kappa B - antagonists &amp; inhibitors ; NF-κB protein ; Nitric oxide ; Nitric-oxide synthase ; Original Article ; Pharmacology/Toxicology ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - pathology ; Proteins ; Rats ; Rats, Sprague-Dawley ; Reactive oxygen species ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Transcription Factor RelA - drug effects ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Western blotting</subject><ispartof>Naunyn-Schmiedeberg's archives of pharmacology, 2017-12, Vol.390 (12), p.1189-1200</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Naunyn-Schmiedeberg's Archives of Pharmacology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</citedby><cites>FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00210-017-1417-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00210-017-1417-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28825114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Shao-Hua</creatorcontrib><creatorcontrib>Wu, Yi-Fang</creatorcontrib><creatorcontrib>Lin, Qi</creatorcontrib><creatorcontrib>Hai, Jian</creatorcontrib><title>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</title><title>Naunyn-Schmiedeberg's archives of pharmacology</title><addtitle>Naunyn-Schmiedeberg's Arch Pharmacol</addtitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><description>The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.</description><subject>Amidohydrolases - antagonists &amp; inhibitors</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Astrocytes</subject><subject>Benzamides - pharmacology</subject><subject>Benzamides - therapeutic use</subject><subject>Benzoxazines - pharmacology</subject><subject>Benzoxazines - therapeutic use</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cannabinoid Receptor Agonists - pharmacology</subject><subject>Cannabinoid Receptor Agonists - therapeutic use</subject><subject>Cannabinoid receptors</subject><subject>Carbamates - pharmacology</subject><subject>Carbamates - therapeutic use</subject><subject>Cerebrovascular Disorders - drug therapy</subject><subject>Cerebrovascular Disorders - physiopathology</subject><subject>Classical pathway</subject><subject>Cortex (frontal)</subject><subject>Cyclooxygenase-2</subject><subject>Endocannabinoids - physiology</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Fatty acids</subject><subject>Fatty-acid amide hydrolase</subject><subject>Glial fibrillary acidic protein</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Hydrolase</subject><subject>IKK protein</subject><subject>IL-1β</subject><subject>Immunofluorescence</subject><subject>Inflammation</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Lymphocytes B</subject><subject>Macrophage Activation - drug effects</subject><subject>Male</subject><subject>Microglia</subject><subject>Morpholines - pharmacology</subject><subject>Morpholines - therapeutic use</subject><subject>Naphthalenes - pharmacology</subject><subject>Naphthalenes - therapeutic use</subject><subject>Neuritis - drug therapy</subject><subject>Neuritis - physiopathology</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>NF-kappa B - antagonists &amp; inhibitors</subject><subject>NF-κB protein</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Original Article</subject><subject>Pharmacology/Toxicology</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - pathology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive oxygen species</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Transcription Factor RelA - drug effects</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Western blotting</subject><issn>0028-1298</issn><issn>1432-1912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUGL1TAUhYMozpvRH-BGAm5cTDVJ27RZOg9HB4YRZMRluU1u3svYJjVpkf41t-79TebxRhHBTS7hfuecC4eQZ5y94ow1rxNjgrOC8abgVX7UA7LhVSkKrrh4SDZ53RZcqPaEnKZ0xxiTvK4fkxPRtqLmvNqQH1vwHnrngzM0osZpDpHCLniXZvr56qauzwUXhaDgDbUwzysFnVkYnUG6X00MAySkzu9d7w7iTx8vatVkAAcXIsxIPS4xOG8HGEfIyJqT0hR8wpR1VO9jjtNUY8Q-wpBdpzBhtEtywdMxGBxov9J-CPqL8zt6c1n8_H5BJ5j332BNT8gjC0PCp_fzjNxevr3dvi-uP7y72r65LnTZiLmoUCGwtq4Uqr620NfIWZv_gLI0FkoGwKTQRkpm0RptBCul7DVU2jJdnpGXR9sphq8LprkbXdI4DOAxLKnjqmSqrEQjM_riH_QuLNHn4zIlRT6Bt2Wm-JHSMaQU0XZTdCPEteOsOxTcHQvucsHdoeBOZc3ze-elH9H8UfxuNAPiCKS88juMf0X_1_UX-Ce0ug</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Su, Shao-Hua</creator><creator>Wu, Yi-Fang</creator><creator>Lin, Qi</creator><creator>Hai, Jian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</title><author>Su, Shao-Hua ; Wu, Yi-Fang ; Lin, Qi ; Hai, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amidohydrolases - antagonists &amp; inhibitors</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Astrocytes</topic><topic>Benzamides - pharmacology</topic><topic>Benzamides - therapeutic use</topic><topic>Benzoxazines - pharmacology</topic><topic>Benzoxazines - therapeutic use</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cannabinoid Receptor Agonists - pharmacology</topic><topic>Cannabinoid Receptor Agonists - therapeutic use</topic><topic>Cannabinoid receptors</topic><topic>Carbamates - pharmacology</topic><topic>Carbamates - therapeutic use</topic><topic>Cerebrovascular Disorders - drug therapy</topic><topic>Cerebrovascular Disorders - physiopathology</topic><topic>Classical pathway</topic><topic>Cortex (frontal)</topic><topic>Cyclooxygenase-2</topic><topic>Endocannabinoids - physiology</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Fatty acids</topic><topic>Fatty-acid amide hydrolase</topic><topic>Glial fibrillary acidic protein</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Hydrolase</topic><topic>IKK protein</topic><topic>IL-1β</topic><topic>Immunofluorescence</topic><topic>Inflammation</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Lymphocytes B</topic><topic>Macrophage Activation - drug effects</topic><topic>Male</topic><topic>Microglia</topic><topic>Morpholines - pharmacology</topic><topic>Morpholines - therapeutic use</topic><topic>Naphthalenes - pharmacology</topic><topic>Naphthalenes - therapeutic use</topic><topic>Neuritis - drug therapy</topic><topic>Neuritis - physiopathology</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>NF-kappa B - antagonists &amp; inhibitors</topic><topic>NF-κB protein</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Original Article</topic><topic>Pharmacology/Toxicology</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - pathology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive oxygen species</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Transcription Factor RelA - drug effects</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Shao-Hua</creatorcontrib><creatorcontrib>Wu, Yi-Fang</creatorcontrib><creatorcontrib>Lin, Qi</creatorcontrib><creatorcontrib>Hai, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shao-Hua</au><au>Wu, Yi-Fang</au><au>Lin, Qi</au><au>Hai, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</atitle><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle><stitle>Naunyn-Schmiedeberg's Arch Pharmacol</stitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>390</volume><issue>12</issue><spage>1189</spage><epage>1200</epage><pages>1189-1200</pages><issn>0028-1298</issn><eissn>1432-1912</eissn><abstract>The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28825114</pmid><doi>10.1007/s00210-017-1417-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-1298
ispartof Naunyn-Schmiedeberg's archives of pharmacology, 2017-12, Vol.390 (12), p.1189-1200
issn 0028-1298
1432-1912
language eng
recordid cdi_proquest_miscellaneous_1930934276
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amidohydrolases - antagonists & inhibitors
Animals
Anti-Inflammatory Agents - pharmacology
Anti-Inflammatory Agents - therapeutic use
Astrocytes
Benzamides - pharmacology
Benzamides - therapeutic use
Benzoxazines - pharmacology
Benzoxazines - therapeutic use
Biomedical and Life Sciences
Biomedicine
Cannabinoid Receptor Agonists - pharmacology
Cannabinoid Receptor Agonists - therapeutic use
Cannabinoid receptors
Carbamates - pharmacology
Carbamates - therapeutic use
Cerebrovascular Disorders - drug therapy
Cerebrovascular Disorders - physiopathology
Classical pathway
Cortex (frontal)
Cyclooxygenase-2
Endocannabinoids - physiology
Enzyme-linked immunosorbent assay
Fatty acids
Fatty-acid amide hydrolase
Glial fibrillary acidic protein
Hippocampus - drug effects
Hippocampus - metabolism
Hippocampus - pathology
Hydrolase
IKK protein
IL-1β
Immunofluorescence
Inflammation
Ischemia
Kinases
Lymphocytes B
Macrophage Activation - drug effects
Male
Microglia
Morpholines - pharmacology
Morpholines - therapeutic use
Naphthalenes - pharmacology
Naphthalenes - therapeutic use
Neuritis - drug therapy
Neuritis - physiopathology
Neuroprotection
Neurosciences
NF-kappa B - antagonists & inhibitors
NF-κB protein
Nitric oxide
Nitric-oxide synthase
Original Article
Pharmacology/Toxicology
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Prefrontal Cortex - pathology
Proteins
Rats
Rats, Sprague-Dawley
Reactive oxygen species
Rodents
Signal transduction
Signal Transduction - drug effects
Transcription Factor RelA - drug effects
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Western blotting
title Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20receptor%20agonist%20WIN55,212-2%20and%20fatty%20acid%20amide%20hydrolase%20inhibitor%20URB597%20ameliorate%20neuroinflammatory%20responses%20in%20chronic%20cerebral%20hypoperfusion%20model%20by%20blocking%20NF-%CE%BAB%20pathways&rft.jtitle=Naunyn-Schmiedeberg's%20archives%20of%20pharmacology&rft.au=Su,%20Shao-Hua&rft.date=2017-12-01&rft.volume=390&rft.issue=12&rft.spage=1189&rft.epage=1200&rft.pages=1189-1200&rft.issn=0028-1298&rft.eissn=1432-1912&rft_id=info:doi/10.1007/s00210-017-1417-9&rft_dat=%3Cproquest_cross%3E1930934276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962549183&rft_id=info:pmid/28825114&rfr_iscdi=true