Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways
The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p...
Gespeichert in:
Veröffentlicht in: | Naunyn-Schmiedeberg's archives of pharmacology 2017-12, Vol.390 (12), p.1189-1200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1200 |
---|---|
container_issue | 12 |
container_start_page | 1189 |
container_title | Naunyn-Schmiedeberg's archives of pharmacology |
container_volume | 390 |
creator | Su, Shao-Hua Wu, Yi-Fang Lin, Qi Hai, Jian |
description | The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury. |
doi_str_mv | 10.1007/s00210-017-1417-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930934276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930934276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</originalsourceid><addsrcrecordid>eNp1kUGL1TAUhYMozpvRH-BGAm5cTDVJ27RZOg9HB4YRZMRluU1u3svYJjVpkf41t-79TebxRhHBTS7hfuecC4eQZ5y94ow1rxNjgrOC8abgVX7UA7LhVSkKrrh4SDZ53RZcqPaEnKZ0xxiTvK4fkxPRtqLmvNqQH1vwHnrngzM0osZpDpHCLniXZvr56qauzwUXhaDgDbUwzysFnVkYnUG6X00MAySkzu9d7w7iTx8vatVkAAcXIsxIPS4xOG8HGEfIyJqT0hR8wpR1VO9jjtNUY8Q-wpBdpzBhtEtywdMxGBxov9J-CPqL8zt6c1n8_H5BJ5j332BNT8gjC0PCp_fzjNxevr3dvi-uP7y72r65LnTZiLmoUCGwtq4Uqr620NfIWZv_gLI0FkoGwKTQRkpm0RptBCul7DVU2jJdnpGXR9sphq8LprkbXdI4DOAxLKnjqmSqrEQjM_riH_QuLNHn4zIlRT6Bt2Wm-JHSMaQU0XZTdCPEteOsOxTcHQvucsHdoeBOZc3ze-elH9H8UfxuNAPiCKS88juMf0X_1_UX-Ce0ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962549183</pqid></control><display><type>article</type><title>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Su, Shao-Hua ; Wu, Yi-Fang ; Lin, Qi ; Hai, Jian</creator><creatorcontrib>Su, Shao-Hua ; Wu, Yi-Fang ; Lin, Qi ; Hai, Jian</creatorcontrib><description>The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.</description><identifier>ISSN: 0028-1298</identifier><identifier>EISSN: 1432-1912</identifier><identifier>DOI: 10.1007/s00210-017-1417-9</identifier><identifier>PMID: 28825114</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amidohydrolases - antagonists & inhibitors ; Animals ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Astrocytes ; Benzamides - pharmacology ; Benzamides - therapeutic use ; Benzoxazines - pharmacology ; Benzoxazines - therapeutic use ; Biomedical and Life Sciences ; Biomedicine ; Cannabinoid Receptor Agonists - pharmacology ; Cannabinoid Receptor Agonists - therapeutic use ; Cannabinoid receptors ; Carbamates - pharmacology ; Carbamates - therapeutic use ; Cerebrovascular Disorders - drug therapy ; Cerebrovascular Disorders - physiopathology ; Classical pathway ; Cortex (frontal) ; Cyclooxygenase-2 ; Endocannabinoids - physiology ; Enzyme-linked immunosorbent assay ; Fatty acids ; Fatty-acid amide hydrolase ; Glial fibrillary acidic protein ; Hippocampus - drug effects ; Hippocampus - metabolism ; Hippocampus - pathology ; Hydrolase ; IKK protein ; IL-1β ; Immunofluorescence ; Inflammation ; Ischemia ; Kinases ; Lymphocytes B ; Macrophage Activation - drug effects ; Male ; Microglia ; Morpholines - pharmacology ; Morpholines - therapeutic use ; Naphthalenes - pharmacology ; Naphthalenes - therapeutic use ; Neuritis - drug therapy ; Neuritis - physiopathology ; Neuroprotection ; Neurosciences ; NF-kappa B - antagonists & inhibitors ; NF-κB protein ; Nitric oxide ; Nitric-oxide synthase ; Original Article ; Pharmacology/Toxicology ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - pathology ; Proteins ; Rats ; Rats, Sprague-Dawley ; Reactive oxygen species ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Transcription Factor RelA - drug effects ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Western blotting</subject><ispartof>Naunyn-Schmiedeberg's archives of pharmacology, 2017-12, Vol.390 (12), p.1189-1200</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Naunyn-Schmiedeberg's Archives of Pharmacology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</citedby><cites>FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00210-017-1417-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00210-017-1417-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28825114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Shao-Hua</creatorcontrib><creatorcontrib>Wu, Yi-Fang</creatorcontrib><creatorcontrib>Lin, Qi</creatorcontrib><creatorcontrib>Hai, Jian</creatorcontrib><title>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</title><title>Naunyn-Schmiedeberg's archives of pharmacology</title><addtitle>Naunyn-Schmiedeberg's Arch Pharmacol</addtitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><description>The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.</description><subject>Amidohydrolases - antagonists & inhibitors</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Astrocytes</subject><subject>Benzamides - pharmacology</subject><subject>Benzamides - therapeutic use</subject><subject>Benzoxazines - pharmacology</subject><subject>Benzoxazines - therapeutic use</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cannabinoid Receptor Agonists - pharmacology</subject><subject>Cannabinoid Receptor Agonists - therapeutic use</subject><subject>Cannabinoid receptors</subject><subject>Carbamates - pharmacology</subject><subject>Carbamates - therapeutic use</subject><subject>Cerebrovascular Disorders - drug therapy</subject><subject>Cerebrovascular Disorders - physiopathology</subject><subject>Classical pathway</subject><subject>Cortex (frontal)</subject><subject>Cyclooxygenase-2</subject><subject>Endocannabinoids - physiology</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Fatty acids</subject><subject>Fatty-acid amide hydrolase</subject><subject>Glial fibrillary acidic protein</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Hydrolase</subject><subject>IKK protein</subject><subject>IL-1β</subject><subject>Immunofluorescence</subject><subject>Inflammation</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Lymphocytes B</subject><subject>Macrophage Activation - drug effects</subject><subject>Male</subject><subject>Microglia</subject><subject>Morpholines - pharmacology</subject><subject>Morpholines - therapeutic use</subject><subject>Naphthalenes - pharmacology</subject><subject>Naphthalenes - therapeutic use</subject><subject>Neuritis - drug therapy</subject><subject>Neuritis - physiopathology</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>NF-kappa B - antagonists & inhibitors</subject><subject>NF-κB protein</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Original Article</subject><subject>Pharmacology/Toxicology</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - pathology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive oxygen species</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Transcription Factor RelA - drug effects</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Western blotting</subject><issn>0028-1298</issn><issn>1432-1912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUGL1TAUhYMozpvRH-BGAm5cTDVJ27RZOg9HB4YRZMRluU1u3svYJjVpkf41t-79TebxRhHBTS7hfuecC4eQZ5y94ow1rxNjgrOC8abgVX7UA7LhVSkKrrh4SDZ53RZcqPaEnKZ0xxiTvK4fkxPRtqLmvNqQH1vwHnrngzM0osZpDpHCLniXZvr56qauzwUXhaDgDbUwzysFnVkYnUG6X00MAySkzu9d7w7iTx8vatVkAAcXIsxIPS4xOG8HGEfIyJqT0hR8wpR1VO9jjtNUY8Q-wpBdpzBhtEtywdMxGBxov9J-CPqL8zt6c1n8_H5BJ5j332BNT8gjC0PCp_fzjNxevr3dvi-uP7y72r65LnTZiLmoUCGwtq4Uqr620NfIWZv_gLI0FkoGwKTQRkpm0RptBCul7DVU2jJdnpGXR9sphq8LprkbXdI4DOAxLKnjqmSqrEQjM_riH_QuLNHn4zIlRT6Bt2Wm-JHSMaQU0XZTdCPEteOsOxTcHQvucsHdoeBOZc3ze-elH9H8UfxuNAPiCKS88juMf0X_1_UX-Ce0ug</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Su, Shao-Hua</creator><creator>Wu, Yi-Fang</creator><creator>Lin, Qi</creator><creator>Hai, Jian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</title><author>Su, Shao-Hua ; Wu, Yi-Fang ; Lin, Qi ; Hai, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4e9ea08549e9b5fab5e108854ae63dfa30aa062cd660fefdcd20366bca4cf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amidohydrolases - antagonists & inhibitors</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Astrocytes</topic><topic>Benzamides - pharmacology</topic><topic>Benzamides - therapeutic use</topic><topic>Benzoxazines - pharmacology</topic><topic>Benzoxazines - therapeutic use</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cannabinoid Receptor Agonists - pharmacology</topic><topic>Cannabinoid Receptor Agonists - therapeutic use</topic><topic>Cannabinoid receptors</topic><topic>Carbamates - pharmacology</topic><topic>Carbamates - therapeutic use</topic><topic>Cerebrovascular Disorders - drug therapy</topic><topic>Cerebrovascular Disorders - physiopathology</topic><topic>Classical pathway</topic><topic>Cortex (frontal)</topic><topic>Cyclooxygenase-2</topic><topic>Endocannabinoids - physiology</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Fatty acids</topic><topic>Fatty-acid amide hydrolase</topic><topic>Glial fibrillary acidic protein</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Hydrolase</topic><topic>IKK protein</topic><topic>IL-1β</topic><topic>Immunofluorescence</topic><topic>Inflammation</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Lymphocytes B</topic><topic>Macrophage Activation - drug effects</topic><topic>Male</topic><topic>Microglia</topic><topic>Morpholines - pharmacology</topic><topic>Morpholines - therapeutic use</topic><topic>Naphthalenes - pharmacology</topic><topic>Naphthalenes - therapeutic use</topic><topic>Neuritis - drug therapy</topic><topic>Neuritis - physiopathology</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>NF-kappa B - antagonists & inhibitors</topic><topic>NF-κB protein</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Original Article</topic><topic>Pharmacology/Toxicology</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - pathology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive oxygen species</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Transcription Factor RelA - drug effects</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Shao-Hua</creatorcontrib><creatorcontrib>Wu, Yi-Fang</creatorcontrib><creatorcontrib>Lin, Qi</creatorcontrib><creatorcontrib>Hai, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shao-Hua</au><au>Wu, Yi-Fang</au><au>Lin, Qi</au><au>Hai, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways</atitle><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle><stitle>Naunyn-Schmiedeberg's Arch Pharmacol</stitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>390</volume><issue>12</issue><spage>1189</spage><epage>1200</epage><pages>1189-1200</pages><issn>0028-1298</issn><eissn>1432-1912</eissn><abstract>The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28825114</pmid><doi>10.1007/s00210-017-1417-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-1298 |
ispartof | Naunyn-Schmiedeberg's archives of pharmacology, 2017-12, Vol.390 (12), p.1189-1200 |
issn | 0028-1298 1432-1912 |
language | eng |
recordid | cdi_proquest_miscellaneous_1930934276 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amidohydrolases - antagonists & inhibitors Animals Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use Astrocytes Benzamides - pharmacology Benzamides - therapeutic use Benzoxazines - pharmacology Benzoxazines - therapeutic use Biomedical and Life Sciences Biomedicine Cannabinoid Receptor Agonists - pharmacology Cannabinoid Receptor Agonists - therapeutic use Cannabinoid receptors Carbamates - pharmacology Carbamates - therapeutic use Cerebrovascular Disorders - drug therapy Cerebrovascular Disorders - physiopathology Classical pathway Cortex (frontal) Cyclooxygenase-2 Endocannabinoids - physiology Enzyme-linked immunosorbent assay Fatty acids Fatty-acid amide hydrolase Glial fibrillary acidic protein Hippocampus - drug effects Hippocampus - metabolism Hippocampus - pathology Hydrolase IKK protein IL-1β Immunofluorescence Inflammation Ischemia Kinases Lymphocytes B Macrophage Activation - drug effects Male Microglia Morpholines - pharmacology Morpholines - therapeutic use Naphthalenes - pharmacology Naphthalenes - therapeutic use Neuritis - drug therapy Neuritis - physiopathology Neuroprotection Neurosciences NF-kappa B - antagonists & inhibitors NF-κB protein Nitric oxide Nitric-oxide synthase Original Article Pharmacology/Toxicology Prefrontal Cortex - drug effects Prefrontal Cortex - metabolism Prefrontal Cortex - pathology Proteins Rats Rats, Sprague-Dawley Reactive oxygen species Rodents Signal transduction Signal Transduction - drug effects Transcription Factor RelA - drug effects Tumor necrosis factor-TNF Tumor necrosis factor-α Western blotting |
title | Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20receptor%20agonist%20WIN55,212-2%20and%20fatty%20acid%20amide%20hydrolase%20inhibitor%20URB597%20ameliorate%20neuroinflammatory%20responses%20in%20chronic%20cerebral%20hypoperfusion%20model%20by%20blocking%20NF-%CE%BAB%20pathways&rft.jtitle=Naunyn-Schmiedeberg's%20archives%20of%20pharmacology&rft.au=Su,%20Shao-Hua&rft.date=2017-12-01&rft.volume=390&rft.issue=12&rft.spage=1189&rft.epage=1200&rft.pages=1189-1200&rft.issn=0028-1298&rft.eissn=1432-1912&rft_id=info:doi/10.1007/s00210-017-1417-9&rft_dat=%3Cproquest_cross%3E1930934276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962549183&rft_id=info:pmid/28825114&rfr_iscdi=true |