Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia

Early death is the main obstacle for the cure of patients with acute promyelocytic leukemia (APL). We have analyzed risk factors of early death from 526 consecutive newly diagnosed APL patients between 2004 and 2016. The overall incidence of early death was 7.2% (38/526). The peak hazard of early de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of hematology 2017-11, Vol.96 (11), p.1793-1800
Hauptverfasser: Lou, Yinjun, Ma, Yafang, Sun, Jianai, Suo, Sansan, Tong, Hongyan, Qian, Wenbin, Mai, Wenyuan, Meng, Haitao, Jin, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1800
container_issue 11
container_start_page 1793
container_title Annals of hematology
container_volume 96
creator Lou, Yinjun
Ma, Yafang
Sun, Jianai
Suo, Sansan
Tong, Hongyan
Qian, Wenbin
Mai, Wenyuan
Meng, Haitao
Jin, Jie
description Early death is the main obstacle for the cure of patients with acute promyelocytic leukemia (APL). We have analyzed risk factors of early death from 526 consecutive newly diagnosed APL patients between 2004 and 2016. The overall incidence of early death was 7.2% (38/526). The peak hazard of early death occurred in the first 0–3 days. Multivariate logistic analysis demonstrated white blood cell (WBC) counts [odds ratio (OR) = 1.039; 95% confidence interval (CI): 1.024–1.055; P  40 × 10 9 /L), intermediate risk (WBC/platelet  60, not in low and ultra-high risk) and ultra-high risk (WBC > 50 × 10 9 /L), the early death rates were 0, 0.6, 12.8, and 41.2%, respectively. In conclusion, we proposed a modified Sanz risk model as a useful predictor of early death risk in patients with APL.
doi_str_mv 10.1007/s00277-017-3096-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930931595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951917989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-51a0b9fc7736821fe6939a96b834dda891ae74992527d3cf617043a6e7030de93</originalsourceid><addsrcrecordid>eNp1kU1vFSEUhonR2Gv1B7gxJG7cjPIxDMPSNLU1aeJCXRMuHCrtDFyBaTMu_eUyudUYE9mQcJ7zcOBF6CUlbykh8l0hhEnZESo7TtTQiUdoR3vOOiLG_jHaEcVVJ9o6Qc9KuSGEsrFnT9EJG0fGiRA79PPce7A13IW64uSxwXNywQdw-LOJP3AO5XY7ggn7lDGYPK3Yganf8CGDC601RRwiPpgaINaC70OrRbjfuGCuYyrNZexSoXWkeYUp2bUGiydYbmEO5jl64s1U4MXDfoq-fjj_cnbZXX26-Hj2_qqzXLLaCWrIXnkrJR9GRj0M7XVGDfuR986ZUVEDsleKCSYdt36gkvTcDCAJJw4UP0Vvjt42xvcFStVzKBamyURIS9FUtU_kVCjR0Nf_oDdpybFN1yhBFZVq3IT0SNmcSsng9SGH2eRVU6K3gPQxIN0C0ltAejO_ejAv-xncn47fiTSAHYHSSvEa8l9X_9f6C7JonEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951917989</pqid></control><display><type>article</type><title>Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lou, Yinjun ; Ma, Yafang ; Sun, Jianai ; Suo, Sansan ; Tong, Hongyan ; Qian, Wenbin ; Mai, Wenyuan ; Meng, Haitao ; Jin, Jie</creator><creatorcontrib>Lou, Yinjun ; Ma, Yafang ; Sun, Jianai ; Suo, Sansan ; Tong, Hongyan ; Qian, Wenbin ; Mai, Wenyuan ; Meng, Haitao ; Jin, Jie</creatorcontrib><description>Early death is the main obstacle for the cure of patients with acute promyelocytic leukemia (APL). We have analyzed risk factors of early death from 526 consecutive newly diagnosed APL patients between 2004 and 2016. The overall incidence of early death was 7.2% (38/526). The peak hazard of early death occurred in the first 0–3 days. Multivariate logistic analysis demonstrated white blood cell (WBC) counts [odds ratio (OR) = 1.039; 95% confidence interval (CI): 1.024–1.055; P  &lt; 0.001], age (OR = 1.061; 95% CI: 1.025–1.099; P  = 0.001) and platelet counts (OR = 0.971; 95% CI: 0.944–0.999; P  = 0.038) were independent risk factors for early death. Furthermore, receiver-operator characteristic (ROC) curve analyses revealed a simple WBC/platelet ratio was significantly more accurate in predicting early death [areas under the ROC curve (AUC) = 0.842, 95% CI: 0.807–0.872) than WBC counts (AUC = 0.793; 95% CI: 0.756–0.827) or Sanz score (AUC = 0.746; 95% CI: 0.706–0.783). We stratified APL patients into four risk subgroups: low risk (WBC ≤ 10 × 10 9 /L, platelet &gt;40 × 10 9 /L), intermediate risk (WBC/platelet &lt;0.2 and age ≤ 60, not in low risk), high risk (WBC/platelet ≥0.2 or age &gt; 60, not in low and ultra-high risk) and ultra-high risk (WBC &gt; 50 × 10 9 /L), the early death rates were 0, 0.6, 12.8, and 41.2%, respectively. In conclusion, we proposed a modified Sanz risk model as a useful predictor of early death risk in patients with APL.</description><identifier>ISSN: 0939-5555</identifier><identifier>EISSN: 1432-0584</identifier><identifier>DOI: 10.1007/s00277-017-3096-5</identifier><identifier>PMID: 28823055</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Female ; Hematology ; Humans ; Leukemia ; Leukemia, Promyelocytic, Acute - diagnosis ; Leukemia, Promyelocytic, Acute - mortality ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Models, Theoretical ; Mortality - trends ; Oncology ; Original Article ; Predictive Value of Tests ; Prospective Studies ; Retrospective Studies ; Risk Factors</subject><ispartof>Annals of hematology, 2017-11, Vol.96 (11), p.1793-1800</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Annals of Hematology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-51a0b9fc7736821fe6939a96b834dda891ae74992527d3cf617043a6e7030de93</citedby><cites>FETCH-LOGICAL-c372t-51a0b9fc7736821fe6939a96b834dda891ae74992527d3cf617043a6e7030de93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00277-017-3096-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00277-017-3096-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28823055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lou, Yinjun</creatorcontrib><creatorcontrib>Ma, Yafang</creatorcontrib><creatorcontrib>Sun, Jianai</creatorcontrib><creatorcontrib>Suo, Sansan</creatorcontrib><creatorcontrib>Tong, Hongyan</creatorcontrib><creatorcontrib>Qian, Wenbin</creatorcontrib><creatorcontrib>Mai, Wenyuan</creatorcontrib><creatorcontrib>Meng, Haitao</creatorcontrib><creatorcontrib>Jin, Jie</creatorcontrib><title>Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia</title><title>Annals of hematology</title><addtitle>Ann Hematol</addtitle><addtitle>Ann Hematol</addtitle><description>Early death is the main obstacle for the cure of patients with acute promyelocytic leukemia (APL). We have analyzed risk factors of early death from 526 consecutive newly diagnosed APL patients between 2004 and 2016. The overall incidence of early death was 7.2% (38/526). The peak hazard of early death occurred in the first 0–3 days. Multivariate logistic analysis demonstrated white blood cell (WBC) counts [odds ratio (OR) = 1.039; 95% confidence interval (CI): 1.024–1.055; P  &lt; 0.001], age (OR = 1.061; 95% CI: 1.025–1.099; P  = 0.001) and platelet counts (OR = 0.971; 95% CI: 0.944–0.999; P  = 0.038) were independent risk factors for early death. Furthermore, receiver-operator characteristic (ROC) curve analyses revealed a simple WBC/platelet ratio was significantly more accurate in predicting early death [areas under the ROC curve (AUC) = 0.842, 95% CI: 0.807–0.872) than WBC counts (AUC = 0.793; 95% CI: 0.756–0.827) or Sanz score (AUC = 0.746; 95% CI: 0.706–0.783). We stratified APL patients into four risk subgroups: low risk (WBC ≤ 10 × 10 9 /L, platelet &gt;40 × 10 9 /L), intermediate risk (WBC/platelet &lt;0.2 and age ≤ 60, not in low risk), high risk (WBC/platelet ≥0.2 or age &gt; 60, not in low and ultra-high risk) and ultra-high risk (WBC &gt; 50 × 10 9 /L), the early death rates were 0, 0.6, 12.8, and 41.2%, respectively. In conclusion, we proposed a modified Sanz risk model as a useful predictor of early death risk in patients with APL.</description><subject>Aged</subject><subject>Female</subject><subject>Hematology</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Leukemia, Promyelocytic, Acute - diagnosis</subject><subject>Leukemia, Promyelocytic, Acute - mortality</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Mortality - trends</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><issn>0939-5555</issn><issn>1432-0584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1vFSEUhonR2Gv1B7gxJG7cjPIxDMPSNLU1aeJCXRMuHCrtDFyBaTMu_eUyudUYE9mQcJ7zcOBF6CUlbykh8l0hhEnZESo7TtTQiUdoR3vOOiLG_jHaEcVVJ9o6Qc9KuSGEsrFnT9EJG0fGiRA79PPce7A13IW64uSxwXNywQdw-LOJP3AO5XY7ggn7lDGYPK3Yganf8CGDC601RRwiPpgaINaC70OrRbjfuGCuYyrNZexSoXWkeYUp2bUGiydYbmEO5jl64s1U4MXDfoq-fjj_cnbZXX26-Hj2_qqzXLLaCWrIXnkrJR9GRj0M7XVGDfuR986ZUVEDsleKCSYdt36gkvTcDCAJJw4UP0Vvjt42xvcFStVzKBamyURIS9FUtU_kVCjR0Nf_oDdpybFN1yhBFZVq3IT0SNmcSsng9SGH2eRVU6K3gPQxIN0C0ltAejO_ejAv-xncn47fiTSAHYHSSvEa8l9X_9f6C7JonEc</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Lou, Yinjun</creator><creator>Ma, Yafang</creator><creator>Sun, Jianai</creator><creator>Suo, Sansan</creator><creator>Tong, Hongyan</creator><creator>Qian, Wenbin</creator><creator>Mai, Wenyuan</creator><creator>Meng, Haitao</creator><creator>Jin, Jie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia</title><author>Lou, Yinjun ; Ma, Yafang ; Sun, Jianai ; Suo, Sansan ; Tong, Hongyan ; Qian, Wenbin ; Mai, Wenyuan ; Meng, Haitao ; Jin, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-51a0b9fc7736821fe6939a96b834dda891ae74992527d3cf617043a6e7030de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Female</topic><topic>Hematology</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Leukemia, Promyelocytic, Acute - diagnosis</topic><topic>Leukemia, Promyelocytic, Acute - mortality</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Mortality - trends</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Yinjun</creatorcontrib><creatorcontrib>Ma, Yafang</creatorcontrib><creatorcontrib>Sun, Jianai</creatorcontrib><creatorcontrib>Suo, Sansan</creatorcontrib><creatorcontrib>Tong, Hongyan</creatorcontrib><creatorcontrib>Qian, Wenbin</creatorcontrib><creatorcontrib>Mai, Wenyuan</creatorcontrib><creatorcontrib>Meng, Haitao</creatorcontrib><creatorcontrib>Jin, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Yinjun</au><au>Ma, Yafang</au><au>Sun, Jianai</au><au>Suo, Sansan</au><au>Tong, Hongyan</au><au>Qian, Wenbin</au><au>Mai, Wenyuan</au><au>Meng, Haitao</au><au>Jin, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia</atitle><jtitle>Annals of hematology</jtitle><stitle>Ann Hematol</stitle><addtitle>Ann Hematol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>96</volume><issue>11</issue><spage>1793</spage><epage>1800</epage><pages>1793-1800</pages><issn>0939-5555</issn><eissn>1432-0584</eissn><abstract>Early death is the main obstacle for the cure of patients with acute promyelocytic leukemia (APL). We have analyzed risk factors of early death from 526 consecutive newly diagnosed APL patients between 2004 and 2016. The overall incidence of early death was 7.2% (38/526). The peak hazard of early death occurred in the first 0–3 days. Multivariate logistic analysis demonstrated white blood cell (WBC) counts [odds ratio (OR) = 1.039; 95% confidence interval (CI): 1.024–1.055; P  &lt; 0.001], age (OR = 1.061; 95% CI: 1.025–1.099; P  = 0.001) and platelet counts (OR = 0.971; 95% CI: 0.944–0.999; P  = 0.038) were independent risk factors for early death. Furthermore, receiver-operator characteristic (ROC) curve analyses revealed a simple WBC/platelet ratio was significantly more accurate in predicting early death [areas under the ROC curve (AUC) = 0.842, 95% CI: 0.807–0.872) than WBC counts (AUC = 0.793; 95% CI: 0.756–0.827) or Sanz score (AUC = 0.746; 95% CI: 0.706–0.783). We stratified APL patients into four risk subgroups: low risk (WBC ≤ 10 × 10 9 /L, platelet &gt;40 × 10 9 /L), intermediate risk (WBC/platelet &lt;0.2 and age ≤ 60, not in low risk), high risk (WBC/platelet ≥0.2 or age &gt; 60, not in low and ultra-high risk) and ultra-high risk (WBC &gt; 50 × 10 9 /L), the early death rates were 0, 0.6, 12.8, and 41.2%, respectively. In conclusion, we proposed a modified Sanz risk model as a useful predictor of early death risk in patients with APL.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28823055</pmid><doi>10.1007/s00277-017-3096-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-5555
ispartof Annals of hematology, 2017-11, Vol.96 (11), p.1793-1800
issn 0939-5555
1432-0584
language eng
recordid cdi_proquest_miscellaneous_1930931595
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Aged
Female
Hematology
Humans
Leukemia
Leukemia, Promyelocytic, Acute - diagnosis
Leukemia, Promyelocytic, Acute - mortality
Male
Medicine
Medicine & Public Health
Middle Aged
Models, Theoretical
Mortality - trends
Oncology
Original Article
Predictive Value of Tests
Prospective Studies
Retrospective Studies
Risk Factors
title Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectivity%20of%20a%20modified%20Sanz%20risk%20model%20for%20early%20death%20prediction%20in%20patients%20with%20newly%20diagnosed%20acute%20promyelocytic%20leukemia&rft.jtitle=Annals%20of%20hematology&rft.au=Lou,%20Yinjun&rft.date=2017-11-01&rft.volume=96&rft.issue=11&rft.spage=1793&rft.epage=1800&rft.pages=1793-1800&rft.issn=0939-5555&rft.eissn=1432-0584&rft_id=info:doi/10.1007/s00277-017-3096-5&rft_dat=%3Cproquest_cross%3E1951917989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951917989&rft_id=info:pmid/28823055&rfr_iscdi=true